Summary

通过对Rho激酶活性的暂时抑制,增强人类诱导多能干细胞衍生心肌细胞的诱导

Published: July 10, 2019
doi:

Summary

在该协议中,我们演示并阐述了如何使用人类诱导多能干细胞进行心肌细胞分化和纯化,并进一步说明如何利用Rho相关蛋白激酶抑制剂提高移植效率小鼠心肌梗死模型的预处理。

Abstract

提高细胞治疗治疗对心肌再生的一个关键因素是安全有效地提高细胞移植率。Y-27632 是 Rho 相关、含线圈蛋白激酶 (RhoA/ROCK) 的强效抑制剂,用于防止分离引起的细胞凋亡(阿诺基斯)。我们证明,Y-27632在植入前对人类诱导多能干细胞衍生心肌细胞(hiPSC-CMs+RI)进行预处理,导致急性心肌梗死(MI)小鼠模型中的细胞移植率提高。在这里,我们描述了使用Y-27632进行hiPSC-CM分化、纯化和细胞预处理的完整过程,以及由此产生的细胞收缩、钙瞬态测量和移植到小鼠MI模型中。该方法提供了一种简单、安全、有效、低成本的方法,显著提高了细胞移植率。该方法不仅与其他方法相结合,进一步提高细胞移植效率,而且为研究其他心脏疾病的发病机制提供了良好的依据。

Introduction

干细胞疗法已经显示出相当大的潜力,作为治疗由MI1造成的心脏损伤。差别化的hiPSC的使用为hiPSC-CMs2提供了取之不尽的源,并为突破性治疗的快速发展打开了大门。然而,治疗转化仍然存在许多限制,包括植入细胞移植率极低的挑战。

分离细胞与胰蛋白酶启动阿诺基斯3,这是加速,只有当这些细胞被注射到恶劣的环境,如缺血性心肌,其中缺氧环境加速走向细胞死亡。在剩余的细胞中,很大一部分从植入部位被冲出到血液中,并扩散到整个周围。其中一个关键的凋亡途径是RhoA/ROCK通路4。根据以前的研究,RhoA/ROCK通路调节行为素细胞骨骼组织5,6,这是负责细胞功能障碍7,8。ROCK抑制剂Y-27632在体细胞分离和传血过程中广泛使用,以增加细胞附着力,减少细胞凋亡9、10、11。在这项研究中,Y-27632用于在移植前治疗hiPSC-CM,以试图提高细胞移植率。

建立了几种旨在提高细胞移植率的方法,如热冲击和基底膜基质涂层12。除了这些方法,基因技术还可以促进心肌细胞增殖13或逆转非心肌细胞进入心肌细胞14。从生物工程的角度来看,心肌细胞被播种在生物材料支架上,以提高移植效率15。不幸的是,这些方法大多复杂且成本高昂。相反,这里提出的方法简单、经济、有效,可作为移植前的基础治疗,以及与其他技术结合使用。

Protocol

本研究中的所有动物程序均获得伯明翰阿拉巴马大学机构动物护理和使用委员会(IACUC)的批准,并基于国家卫生研究院实验室动物护理和使用指南(NIH出版物No.85-23)。 1. 文化媒体和文化板块的编制 中等准备 对于hiPSC介质,混合400 mL的人类多能干细胞(hPSC)基底培养基(材料表1)和100 mL的hPSC 5x补充剂;将混合物储存在4°C。 对于 RPMI 1640/B27…

Representative Results

本研究中使用的hiPSC-CMs源自人类起源,具有荧光酶报告基因;因此,通过生物发光成像(BLI)17(图1A,B)检测出移植细胞在体内的存活率。对于组织学心脏部分,人类特异性心脏肌钙蛋白T(hcTnT)和人类核抗原(HNA)双阳性细胞被归类为移植的hiPSC-CMs(图1C)。两种结果表明,Y-27632预处理显著改善了细胞移植率。与hiPSC…

Discussion

本研究的关键步骤包括获得纯hiPSC-CM,通过Y-27632预处理提高hiPSC-CM的活性,最后,将精确数量的hiPSC-CM移植到小鼠MI模型中。

这里讨论的关键问题是:首先,我们优化了无葡萄糖纯化方法19,建立了新型高效纯化系统。系统程序包括应用细胞分离酶,在明胶涂层板中重新植入细胞,在重新镀层后在中和培养培养24小时,以及尽量减少移植前细胞的消化时间。其中执行,以达到…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者感谢Joseph C. Wu博士(斯坦福大学)为Fluc-GFP结构提供了良好的帮助,并感谢刘燕文博士提供了出色的技术援助。这项研究得到国家卫生研究院RO1授予HL95077、HL114120、HL131017、HL138023、UO1HL134764(至J.Z.)和HL121206A1(至L.Z.)和R56资助HL142627(至W.Z.)的资助。16SDG30410018,和阿拉巴马大学伯明翰分校的教师发展补助金(到W.Z.)。

Materials

Reagent
Accutase (stem cell detachment solution) STEMCELL Technologies #07920
B27 minus insulin Fisher Scientific A1895601
B27 Supplement Fisher Scientific 17-504-044
CHIR99021 Stem Cell Technologies 72054
DMEM (1x), high glucose, HEPES, no phenol red Thermofisher 20163029
Fetal bovine serum Atlanta Biologicals S11150
Fluo-4 AM (calcium indicator) Invitrogen/Thermofisher F14201
Glucose-free RPMI 1640 Fisher Scientific 11879020
IWR1 Stem Cell Technologies 72562
Matrigel (extracellular matrix ) Fisher Scientific CB-40230C
mTeSR (human pluripotent stem cells medium) STEMCELL Technologies 85850
Pen-strep antibiotic Fisher Scientific 15-140-122
Pluronic F-127 (surfactant polyol) Sigma-Aldrich P2443
Rho activator II Cytoskeleton CN03
RPMI1640 Fisher Scientific 11875119
Sodium DL-lactate Sigma-Aldrich L4263
TrypLE (cell-dissociation enzymes) Fisher Scientific 12-605-010
Verapamil Sigma-Aldrich V4629
Y-27632 STEMCELL Technologies 72304
Name Company Catalog Number Comments
Equipment and Supplies
IVIS Lumina III Bioluminescence Instruments PerkinElmer CLS136334
15 mm Coverslips Warner CS-15R15
Centrifuge Eppendorf 5415R
Confocal Microscope Olympus IX81
Cryostat Thermo Scientific NX50
Dual Automatic Temperature Controller Warner Instruments TC-344B
Electrophoresis Power Supply BIO-RAD 1645050
Fluoresence Microscope Olympus IX83
High Speed Camera pco 1200 s
Laser Scan Head Olympus FV-1000
Low Profile Open Bath Chamber (mounts into above microincubation system) Warner Instruments RC-42LP
Microincubation System Warner Instruments DH-40iL
Minivent Mouse Ventilator Harvard Apparatus 845
NOD/SCID mice Jackson Laboratory 001303
Precast Protein Gels BIO-RAD 4561033
PVDF Transfer Packs BIO-RAD 1704156
Trans-Blot System BIO-RAD Trans-Blot Turbo
Hot bead sterilizer Fine Science Tools 18000-45
Name Company Catalog Number Comments
Antibody
Anti-human Nucleolin (Alexa Fluor 647) Abcam ab198580
Cardiac Troponin T R&D Systems MAB1874
Cardiac Troponin C Abcam ab137130
Cardiac Troponin I Abcam ab47003
Cy5-donkey anti-mouse Jackson ImmunoResearch Laboratory 715-175-150
Cy3-donkey anti-rabbit Jackson ImmunoResearch Laboratory 711-165-152
Fitc-donkey anti-mouse Jackson ImmunoResearch Laboratory 715-095-150
GAPDH Abcam ab22555
Human Cardiac Troponin T Abcam ab91605
Integrin β1 Abcam ab24693
Ki67 EMD Millipore ab9260
N-cadherin Abcam ab18203
Phospho-Myosin Light Chain 2 Cell Signaling Technology 3671s
Name Company Catalog Number Comments
Software
Matlab MathWorks R2016A
Image J NIH 1.52g

Referenzen

  1. Menasche, P., et al. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. European Heart Journal. 36 (12), 743-750 (2015).
  2. Burridge, P. W., Keller, G., Gold, J. D., Wu, J. C. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 10 (1), 16-28 (2012).
  3. Frisch, S. M., Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. Journal of Cell Biology. 124 (4), 619-626 (1994).
  4. Haun, F., et al. Identification of a novel anoikis signalling pathway using the fungal virulence factor gliotoxin. Nature Communications. 9 (1), 3524 (2018).
  5. Ohashi, K., et al. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. Journal of Biological Chemistry. 275 (5), 3577-3582 (2000).
  6. Katoh, K., Kano, Y., Noda, Y. Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions. Journal of The Royal Society Interface. 8 (56), 305-311 (2011).
  7. Paoli, P., Giannoni, E., Chiarugi, P. Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta. 1833 (12), 3481-3498 (2013).
  8. Legate, K. R., Fassler, R. Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. Journal of Cell Science. 122 (Pt 2), 187-198 (2009).
  9. Watanabe, K., et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology. 25 (6), 681-686 (2007).
  10. Emre, N., et al. The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers. PLoS One. 5 (8), e12148 (2010).
  11. Ni, Y., Qin, Y., Fang, Z., Zhang, Z. ROCK Inhibitor Y-27632 Promotes Human Retinal Pigment Epithelium Survival by Altering Cellular Biomechanical Properties. Current Molecular Medicine. 17 (9), 637-646 (2017).
  12. Laflamme, M. A., et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology. 25 (9), 1015-1024 (2007).
  13. Zhu, W., Zhao, M., Mattapally, S., Chen, S., Zhang, J. CCND2 Overexpression Enhances the Regenerative Potency of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Remuscularization of Injured Ventricle. Circulation Research. 122 (1), 88-96 (2018).
  14. Song, K., et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 485 (7400), 599-604 (2012).
  15. Ye, L., et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell. 15 (6), 750-761 (2014).
  16. Tohyama, S., et al. Glutamine Oxidation Is Indispensable for Survival of Human Pluripotent Stem Cells. Cell Metabolism. 23 (4), 663-674 (2016).
  17. Ong, S. G., et al. Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes After Acute Myocardial Infarction. Circulation. 132 (8), 762-771 (2015).
  18. Zhao, M., et al. Y-27632 Preconditioning Enhances Transplantation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Myocardial Infarction Mice. Cardiovascular Research. , (2018).
  19. Tohyama, S., et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 12 (1), 127-137 (2013).
  20. Silginer, M., Weller, M., Ziegler, U., Roth, P. Integrin inhibition promotes atypical anoikis in glioma cells. Cell Death & Disease. 5, e1012 (2014).
  21. Lelievre, E. C., et al. N-cadherin mediates neuronal cell survival through Bim down-regulation. PLoS One. 7 (3), e33206 (2012).
  22. Murata, K., et al. Increase in cell motility by carbon ion irradiation via the Rho signaling pathway and its inhibition by the ROCK inhibitor Y-27632 in lung adenocarcinoma A549 cells. Journal of Radiation Research. 55 (4), 658-664 (2014).
  23. Srivastava, K., Shao, B., Bayraktutan, U. PKC-beta exacerbates in vitro brain barrier damage in hyperglycemic settings via regulation of RhoA/Rho-kinase/MLC2 pathway. Journal of Cerebral Blood Flow & Metabolism. 33 (12), 1928-1936 (2013).

Play Video

Diesen Artikel zitieren
Zhao, M., Tang, Y., Ernst, P. J., Kahn-Krell, A., Fan, C., Pretorius, D., Zhu, H., Lou, X., Zhou, L., Zhang, J., Zhu, W. Enhancing the Engraftment of Human Induced Pluripotent Stem Cell-derived Cardiomyocytes via a Transient Inhibition of Rho Kinase Activity. J. Vis. Exp. (149), e59452, doi:10.3791/59452 (2019).

View Video