Presented here is a protocol to induce diffuse traumatic brain injury using a lateral fluid percussion device followed by the collection of the caecum content for gut microbiome analysis.
Increasing evidence shows that the microbiota-gut-brain axis plays an important role in the pathogenesis of brain diseases. Several studies also demonstrate that traumatic brain injuries cause changes to the gut microbiota. However, mechanisms underlying the bidirectional regulation of the brain-gut axis remain unknown. Currently, few models exist for studying the changes in gut microbiota after traumatic brain injury. Therefore, the presented study combines protocols for inducing traumatic brain injury using a lateral fluid percussion device and analysis of caecum samples following injury for investigating alterations in the gut microbiome. Alterations of the gut microbiota composition after traumatic brain injury are determined using 16S-rDNA sequencing. This protocol provides an effective method for studying the relationships between enteric microorganisms and traumatic brain injury.
Traumatic brain injury (TBI) is a global public health problem and the leading cause of death and disability in young adults1,2. TBI causes many deaths every year, and survivors experience a variety of physical, psychiatric, emotional, and cognitive disabilities. Therefore, TBI is a heavy burden to a patient’s family and societal resources. TBI involves both the primary brain injury that occurs at the time of trauma and any secondary brain injuries that develop hours to months following initial injury. Secondary brain injury is mediated by several biochemical cascades, which are not only detrimental to the brain but also have significant negative effects on various organ systems, including the gastrointestinal system3.
Currently, there are three models to induce TBI in animal experiments: fluid percussion injury, control cortical impact (CCI), and weight drop acceleration. Lateral fluid percussion injury (LFPI) is the most commonly used model to establish diffuse brain injury (DAI)4. The device produces brain injury through a craniectomy by applying a brief fluid pressure pulse to the intact dura. This pulse is created by the strike of the pendulum. LFPI is a reproducible and controllable modeling method for TBI research.
The microbiome is defined as the collective genomes of all microorganisms that reside in the human body. Intestinal microbes in particular not only play an important role in intestinal homeostasis and function but also regulate many aspects of host physiology and the functioning of other organs5. In recent years, there is increasing evidence that indicates that gut microbiota regulate brain development and function via brain-gut axes6. Disruption of the gut microbiota has been linked to several brain function disorders including Parkinson’s disease, mood disorders, and autism7. Recently, preclinical studies have also reported that acute brain injury can induce changes in gut microbiota8,9.
A study by Treangen et al.10 found significant decreases in three microbial species and increases in two microbial species after CCI-induced TBI. This evidence indicates that modulation of gut microbiota may be a therapeutic method in TBI management. However, the mechanisms underlying brain injury-induced gut microbiota changes remain unknown. For this reason, a relatively simple and efficient model of studying the changes in gut microbiota after TBI is required. Therefore, the present study presents a protocol to examine alterations in gut microbiota after TBI in mice.
All procedures performed were approved by the Experimental Animal Ethics Committee of Zhejiang University. All instruments and materials used in surgery are sterile. The TBI proceudre takes about 20 minutes.
1. Animal care
2. Induction of traumatic brain injury
3. Post-surgery treatment
4. Laparotomy and sample collection from the caecum
5. DNA extraction and 16S-rDNA sequencing and data analysis
Establishment of TBI is shown in Figure 1. After anesthesia and disinfection, the scalp was incised sagittally (Figure 1A). A craniotomy (3 mm in diameter) was trephined into the skull over the right parietal cortex with an electric drill, the dura was kept intact (Figure 1B,C). A plastic injury cannula was placed over the bone window and cemented to the skull using dental acrylic (Figure 1D).
The procedure of lateral fluid percussion is shown in Figure 2. Before starting the device was tested by delivering about 10 pulses until it gives a steady signal. The angle of the pendulum was adjusted to the starting position to reach a pulse intensity of about 2.0 atm (Figure 2A). The cannula was filled with the sterile normal saline. Then the cannula was connected to the LFPI device (Figure 2B). Brain injury was induced by creating an impulse into the closed cranial cavity (Figure 2C).
Laparotomy and caecum fecal sample collection are shown in Figure 3. The laparotomy was performed on the lower abdomen and along the midline (Figure 3A). The caecum was identified and gently separated (Figure 3B,C). The caecum is usually located in the lower right part of the abdomen. It was then incised with sharp scissors (Figure 3D). The contents of caecum (Figure 3E) were extracted and stored in 1.5 mL tubes (Figure 3F). Fecal samples were immediately stored at -80 °C before further use.
16S-rDNA sequencing demonstrated reduced diversity of caecum microbiota in mice 3 days after TBI, the most abundant taxa in caecum contents of sham and TBI groups were showed in Figure 4. The Wilcoxon rank sum test was performed to evaluate microbiota differences between TBI and sham groups in the 16S sequencing analysis, and the p value was less than 0.05. The non-metric multi-dimensional scaling (NMDS) also showed changed composition of caecum microbiota after TBI (Figure 5).
Figure 1: Establishment of TBI. (A) After anesthesia and disinfection, the scalp was incised. (B) Operate a circinate craniotomy on the skull over the right parietal cortex. (C) Keep the dura intact. (D) Cement the plastic injury cannula to the skull using dental acrylic. Please click here to view a larger version of this figure.
Figure 2: The procedure of lateral fluid percussion. (A) Adjustment of the pendulum starting position angle. (B) Filling of the cannula with sterile normal saline, then connection of the cannula to the LFPI device. (C) Brain injury induction by release of the pendulum and creation of an impulse into the closed cranial cavity. Please click here to view a larger version of this figure.
Figure 3: Laparotomy and caecum fecal sample collection. (A) Beginning of the laparotomy from lower abdomen and along the midline. (B,C) Identification of the caecum and subsequent (gentle) removal. (D) Cutting of the caecum with sharp scissors. (E) Extraction of the contents of caecum. (F) Storing of the caecum content samples in 1.5 mL Eppendorf tubes. Please click here to view a larger version of this figure.
Figure 4: The comparison of caecum microbiota diversity. Most abundant taxa in caecum content of sham and TBI groups demonstrated reduced diversity of caecum microbiota in mice 3 days after TBI. Please click here to view a larger version of this figure.
Figure 5: The NMDS analysis. Non-metric multi-dimensional scaling (NMDS) showed changed composition of caecum microbiota after TBI. Please click here to view a larger version of this figure.
Presented here is a simple and efficient protocol to determine changes in cecal microbiota after TBI in mice. Induction of brain injury and collection of caecum content samples are critical parts of the protocol.
Despite researchers having studied the changes of gut microbiota following TBI, the brain injury used in these studies were CCI-8 and weight drop/impact-induced models9. However, the CCI model mostly replicates brain contusion, and the weight drop model may suffer from some inaccuracies. Among all existing brain injury models, LFPI is the most commonly used model, which includes focal and diffuse brain injury11,12 and replicates many important features observed in clinical TBI patients. Key steps throughout the process include protection of the dura and keeping the cannula airtight. However, both craniotomy and conglutination require the operation of a skilled performer, which may be a limitation of this protocol. However, LFPI is still a simple, stable, and accurate method. Therefore, TBI in mice was induced using LFPI in this study, which makes the protocol more representative and valuable in brain injury research.
For gut microbiota analysis, fecal samples were used for its non-invasiveness and convenience. Nevertheless, there are some limitations of fecal sampling. First, the amount of feces collected in each mouse at a certain time point is small, and the amount of feces may be insufficient to perform 16S-rDNA analysis. Second, due to post-traumatic gastrointestinal dysfunction, feces samples are difficult to collect during the acute phase after brain injury (1 h post-injury in this study). In addition, evidence has shown that fecal microbiota composition is different from microbiota in other intestinal segments13. Therefore, caecum contents were collected for gut microbiota analysis in this study. Caecum content sampling requires that mice are sacrificed, and this method allows for the sampling of intestinal tract for histological and immunological examinations, which are important research aspects in studies of brain injury-induced gut dysfunction. Additionally, this method can be used to investigate microbiota changes in other gastrointestinal tracts including the jejunum, ileum, and colon. In conclusion, this protocol is an ideal method for studying TBI-induced changes in gut microbiota.
The authors have nothing to disclose.
The authors have nothing to disclose.
DNA isolation kit | QIAGEN | 51604 | For fast purification of genomic DNA from stool samples |
Gene analysis service | GENEWIZ | Gene analyse service | |
Heating pad | Shanghai SAFE Biotech Co. | TR-200 | heating pad |
Injector | The First Affiliated Hospital, School of Medicine, Zhejiang University | injector | |
LFPI device | Virginia Commonwealth University |
FP302 | LFPI device |
Micro cranial drill | RWD Life Science | 78061 | Micro cranial drill |
Povidone Iodine | The First Affiliated Hospital, School of Medicine, Zhejiang University | Povidone Iodine |