פרוטוקול זה מדגים כיצד להכין מדגם בריקט ולנהל ניסוי דחיסה uniaxial עם בריקט ב שונים2 לחצים באמצעות דמיינו וקבוע-נפח מוצק דלק מערכת הבדיקה צימוד. זה גם מטרתו לחקור שינויים מבחינת התכונות הפיזיות והמכאניות של הפחם הנגרמת על ידי שיתוף2 adsorption.
הזרקת פחמן דו חמצני (CO2) לתוך התפר פחם עמוק הוא משמעות רבה להפחתת ריכוז גזי החממה באטמוספירה והגדלת ההתאוששות של מתאן coalbed. המערכת מציגה כאן מערכת צימוד מוצק ובעלת נפח-רב, הנמצאת כאן כדי לחקור את ההשפעה של שיתוף2 סורזיה על התכונות הפיזיות והמכאניות של הפחם. היכולת לשמור על נפח קבוע ולנטר את המדגם באמצעות מצלמה, מערכת זו מציעה את הפוטנציאל לשפר את דיוק המכשיר ולנתח את האבולוציה שבר עם שיטת הגיאומטריה פרקטלית. נייר זה מספק את כל הצעדים כדי לבצע ניסוי דחיסה uniaxial עם מדגם בריקט ב2 לחצים שונים עם מערכת דלק מוצק צימוד המערכת. בריקט, קר-לחוץ על ידי פחם raw ו נתרן humate מלט, הוא נטען בלחץ גבוה CO2, ועל פני השטח שלה מנוטרים בזמן אמת באמצעות מצלמה. עם זאת, הדמיון בין הבריקט והפחם הגולמי עדיין זקוק לשיפור, ואין אפשרות להזריק גז דליק כגון מתאן (CH4) לבחינה. התוצאות מראות כי ה-CO2 סורזיה מובילה לשיא חוזק ולהפחתת מודול אלסטי של הבריקט, והתפתחות השבר של הבריקט במצב כשל מצביעה על תכונות פרקטלית. החוזק, המודוללי האלסטי והמימד הפרקטלי הם כל הקורלציה עם הלחץ של CO2 אך לא עם מתאם ליניארי. מערכת הבדיקה הבין-מוצקה של המערכת מסוגלת לשמש כפלטפורמה למחקרים ניסיוניים על מכניקת הרוק, בהתחשב באפקט הצימוד הרב.
הריכוז הגובר של CO2 באטמוספירה הוא גורם ישיר הגורם לאפקט ההתחממות הגלובלית. בשל היכולת sorption חזקה של פחם, CO2 קיבוע על בתפר פחם נחשב כאמצעי מעשי וסביבה ידידותית להפחית את פליטת הגלובלית של גז החממה1,2,3. באותו הזמן, CO מוזרק2 יכול להחליף CH4 ותוצאה לקידום ייצור גז ב מתאן התאוששות coalbed (ecbm)4,5,6. הסיכויים האקולוגיים והכלכליים של CO2 קיבוע על לאחרונה משכו תשומת לב ברחבי העולם בקרב חוקרים, כמו גם בין קבוצות שונות להגנת הסביבה בינלאומיים סוכנויות ממשלתיות.
פחם הינו סלע אנאיזוטרופי מבנית המורכב מנקבובית, שבר ומטריצת פחם. מבנה נקבובית יש שטח מסוים גדול שטח, אשר יכול ספוח כמות גדולה של גז, משחק תפקיד חיוני קיבוע על גז, והשבר הוא הנתיב העיקרי של זרימת הגז בחינם7,8. מבנה זה הפיזי הייחודי מוביל קיבולת הספיחה גז גדול עבור CH4 ו-CO2. גז שלי מופקד בתוך coalbed בכמה צורות: (1) נספחת על פני השטח של מיקרונקבוביות ונקבוביות גדולות יותר; (2) נספג במבנה המולקולרי של הפחם; (3) כגז חופשי בשברים ונקבוביות גדולות יותר; ו (4) הומס במים ההפקדה. התנהגות sorption של פחם ל CH4 ו-CO2 גורם נפיחות מטריקס, ומחקרים נוספים להדגים כי זהו תהליך הטרוגנית והוא קשור ללימטיפוסים פחם9,10,11. בנוסף, סורזיה גז יכול לגרום נזק ביחס קונסטיטוטיבי של פחם12,13,14.
דגימת הפחם הגולמי משמשת בדרך כלל ב פחם ו-2 ניסויים צימוד. במיוחד, חתיכה גדולה של פחם גולמי מפני העבודה במכרה פחם הוא גזור להכין דגימה. עם זאת, תכונות פיזיות ומכניות של פחם גלם בהכרח יש רמת פיזור גבוהה עקב התפלגות מרחבית אקראית של נקבוביות טבעיות ושברים בתפר פחם. יתר על כן, פחם הנושאת גז רך וקשה להיות מעוצב מחדש. על פי עקרונות השיטה הניסיונית האורתוגונלית, הבריקט, אשר מחדש עם אבקת פחם גולמי וצמנט, נחשבת לחומר אידיאלי המשמש במבחן הפחם15,16. להיות קר לחוץ עם מתכת מת, כוחה יכול להיות מראש ונשאר יציב על ידי התאמת כמות המלט, אשר מועילה ניתוח השוואתי של אפקט משתנה יחיד. בנוסף, למרות הדוגמאות של המדגם לבריקט הוא ~ 4-10 פעמים, זה של דגימת הפחם raw, מאפייני ספיחה דומה ומאפיינים desorption ומתח מתח נמצאו במחקר ניסיוני17,18 , מיכל בן 19 , 20. במאמר זה, ערכה של חומר דומה לפחם מנשא גז אומצה כדי להכין את בריקט21. הפחם הגולמי נלקח מ4671b6 הפנים הפועלים במכרה הפחם Xinzhuangzi, Huainan, מחוז אנחווי, סין. התפר הפחם הוא כ 450 מ’ מתחת למפלס הקרקע 360 m מתחת לפני הים, וזה מטבלים בערך 15 ° והוא כ 1.6 m עובי. הגובה והקוטר של המדגם הבריקט הם 100 מ”מ ו 50 מ”מ, בהתאמה, שהוא הגודל המומלץ שהוצע על ידי החברה הבינלאומית למכניקה רוק (ISRM)22.
מכשירי מבחן העמסה היוניצירית הקודמים לניסויים בפחם גז בתנאי מעבדה יש כמה מחסורים ומגבלות, שהוצגו כחברים23,24,25,26 ,27,28: (1) במהלך תהליך הטעינה, עוצמת כלי הקיבול יורדת עם הבוכנה נע, גורם לתנודות בלחץ הגז והפרעות של גז מסורזיה; (2) ניטור תמונה בזמן אמת של דגימות, כמו גם מדידות לדפורמציה בסביבת לחץ גז גבוה, קשה לנהל; (3) הם מוגבלים גירוי של הפרעות עומס דינמי על דגימות טעון מראש כדי לנתח את מאפייני התגובה המכנית שלהם. על מנת לשפר את דיוק המכשיר ואת רכישת הנתונים במצב מוצק גז צימוד, מערכת דמיינו ובדיקה קבועה במערכת29 פותחה (איור 1), כולל (1) כלי העמסה דמיינו עם תא אמצעי אחסון קבוע, שהוא רכיב הליבה; (2) מודול מילוי גז עם ערוץ ואקום, שני ערוצי מילוי, וערוץ שחרור; (3) מודול טעינת צירית המורכב ממחשב בדיקה אוניברסלי הידראולי סרוו מחשב ובקרה; (4) מודול רכישת נתונים המורכב ממנגנון מדידה של הזחה בעורק, חיישן לחץ גז, ומצלמה בחלון של כלי הטעינה הדמיינו.
הכלי המרכזי דמיינו (איור 2) הוא תוכנן במיוחד כך שני צילינדרים התאמת קבועים על הלוח העליון ובוכנות להעביר בו זמנית עם הטעינה אחד דרך הקורה, ואת האזור הרציף של הטעינה בוכנה שווה ל סכום של זה של צילינדרים הכוונון. זורם דרך חור פנימי וצינורות רכים, גז בלחץ גבוה בכלי ושני צילינדרים מחובר. לכן, כאשר בוכנה טעינת הספינה נעה כלפי מטה ודוחסת את הגז, מבנה זה יכול לקזז את השינוי בעוצמה ולמנוע הפרעות לחץ. בנוסף, מונעת הפעלת כוח הנגד העצום על הבוכנה במהלך הבחינה ומשפרת באופן משמעותי את בטיחות הכלי. החלונות, המצוידים בזכוכית בורוסיליקט מחוסמת, ממוקמים בשלושה צדדים של כלי הקיבול, מספקים דרך ישירה לצלם את המדגם. זכוכית זו נבדקה בהצלחה והוכיחה להתנגד עד 10 גז MPa עם שיעור הרחבה נמוך, חוזק גבוה, העברה קלה, ויציבות כימית29.
נייר זה מתאר את ההליך לבצע ניסוי דחיסה uniaxial של הפחם CO2-הנושא עם החדש דמיינו ומתמיד גז-מוצק מערכת הבדיקה צימוד, אשר כולל את התיאור של כל החלקים להכין בריקט לדוגמה באמצעות אבקת פחם raw ו הנתרן humate, כמו גם את הצעדים הרצופים כדי להזריק בלחץ גבוה CO2 ולבצע דחיסה uniaxial. כל תהליך דפורמציה לדוגמה מנוטר באמצעות מצלמה. הגישה הניסיונית הזאת מציעה דרך חלופית לנתח באופן כולל את הנזק והאבולוציה המושרה ביותר, האופייניים לפחם הנושאת גז.
בהתחשב בסכנה של גז בלחץ גבוה, כמה צעדים קריטיים חשובים במהלך המבחן. השסתומים ו טבעות O צריך להיבדק והוחלף באופן קבוע, וכל מקור ההצתה לא צריך להיות מותר במעבדה. כאשר משתמשים בשסתום הידני לוויסות הלחץ, הנסניסה צריך לסובב את השסתום לאט כדי להפוך את הלחץ להגדיל את כלי הקיבול דמיינו בהדרגה. אין ל?…
The authors have nothing to disclose.
עבודה זו נתמכת על ידי הפרויקט הלאומי הלאומית של סין לפיתוח כלים מדעיים (גרנט No. 51427804) ו מחוז שאנדונג הלאומית למדע הטבע הקרן (גרנט לא. ZR2017MEE023).
3Y-Leica MPV-SP photometer microphotometric system | Leica,Germany | M090063016 | Used for vitrinite reflectance measurement |
Automatic isotherm adsorption instrument | BeiShiDe Instrument Technology (Beijing)CO.,Ltd. | 3H-2000PH | Isothermal adsorption test |
Electro hydraulic servo universal testing machine | Jinan Shidaishijin testing machine CO.,Ltd | WDW-100EIII | Used to provide axial pressure |
Gas pressure sensor | Beijing Star Sensor Technology CO.,LTD | CYYZ11 | Gas pressure monitoring |
Gas tank(carbon dioxide/helium) | Heifei Henglong Gas.,Ltd | Gas resource | |
high-speed camera | Sony corporation | FDR-AX30 | Image monitoring |
Incubator | Yuyao YuanDong Digital Instrument Factory | XGQ-2000 | Briquette drying |
jaw crusher | Hebi Tianke Instrument CO.,Ltd | EP-2 | Coal grinding |
Manual pressure reducing valve | Shanghai Saergen Instrument CO.,Ltd | R41 | Outlet gas pressure adjustment |
Proximate Analyzer | Changsha Kaiyuan Instrument CO.,Ltd | 5E-MAG6700 | Coal industrial analysis |
Resistance strain gauge | Jinan Sigmar Technology CO.,LTD | ASMB3-16/8 | Poisson ratio measurement |
Sieve shaker (6,16mesh) | Hebi Tianguan Instrument CO.,Ltd | GZS-300 | Coal powder shelter |
Soft pipe | Jinan Quanxing High pressure pipe CO.,Ltd | Inner diameter=5 mm maximal pressure=30 MPa |
|
Standard rock sample circumferential deformation test apparatus | Huainan Qingda Machinery CO.,Ltd | Circumferential deformation acquisition |
|
Strain controlled direct shear apparatus |
Beijing Aerospace Huayu Test Instrument CO.,LTD | ZJ-4A | Tensile strength, cohesion, internal friction angle measurement |
Vaccum pump | Fujiwara,Japan | 750D | Used to vaccumize the vessel |
Valve | Jiangsu Subei Valve Co.,Ltd | S4 NS-MG16-MF1 | Gas seal |
Visual loading vessel | Huainan Qingda Machinery CO.,Ltd | Instrument for sample loading and real-time monitoring |