Les nouvelles techniques de compensation des tissus immunostaining-compatibles comme l’imagerie 3D ultime des organes éclaircis par solvant permettent la visualisation 3D de l’infection cérébrale du virus de la rage et de son environnement cellulaire complexe. D’épaisses tranches de tissu cérébral étiquetées par anticorps sont rendues optiquement transparentes afin d’augmenter la profondeur d’imagerie et de permettre l’analyse 3D par microscopie de balayage laser confocal.
La visualisation des processus d’infection dans les tissus et les organes par immunolabeling est une méthode clé dans la biologie moderne d’infection. La capacité d’observer et d’étudier la distribution, le tropisme et l’abondance des agents pathogènes à l’intérieur des tissus d’organes fournit des données cruciales sur le développement et la progression de la maladie. À l’aide de méthodes de microscopie conventionnelles, l’immunolabeling est principalement limité aux sections minces obtenues à partir d’échantillons incrustés de paraffine ou congelés. Cependant, le plan d’image 2D limité de ces sections minces peut mener à la perte de l’information cruciale sur la structure complexe d’un organe infecté et le contexte cellulaire de l’infection. Les techniques modernes de compensation des tissus multicolores et immunostaining-compatibles offrent maintenant un moyen relativement rapide et peu coûteux d’étudier des piles d’images 3D à fort volume de tissus d’organes infectés par le virus. En exposant le tissu à des solvants organiques, il devient optiquement transparent. Cela correspond aux indices de réfraction de l’échantillon et conduit finalement à une réduction significative de la diffusion de la lumière. Ainsi, en combinaison avec de longs objectifs de distance de travail libre, de grandes sections de tissu jusqu’à 1 mm de taille peuvent être imaged par microscopie de balayage laser confocal e conthique conventionnelle (CLSM) à haute résolution. Ici, nous décrivons un protocole pour appliquer l’imagerie de tissu profond après dégagement de tissu pour visualiser la distribution de virus de rage dans les cerveaux infectés afin d’étudier des sujets comme la pathogénie de virus, la propagation, le tropisme, et la neuroinvasion.
Les techniques d’histologie conventionnelles reposent principalement sur de fines sections de tissus d’organes, qui peuvent intrinsèquement fournir seulement des aperçus 2D dans un environnement 3D complexe. Bien que faisable en principe, la reconstruction 3D à partir de sections minces en série nécessite des pipelines techniques exigeants à la fois pour le découpage et l’alignement silico suivant des images acquises1. En outre, la reconstruction transparente des z-volumes après le découpage de microtome est critique car les artefacts mécaniques et computationnels peuvent rester en raison de l’enregistrement d’image sous-optimal causé par des plans d’image non overlapping, les variations de coloration, et physique destruction des tissus par, par exemple, la lame du microtome. En revanche, le découpage optique pur des échantillons intacts de tissu épais permet l’acquisition des plans d’image de chevauchement (suréchantillonnage) et, de ce fait, facilite la reconstruction 3D. Ceci, à son tour, est très bénéfique pour l’analyse des processus d’infection dans les populations cellulaires complexes (par exemple, les réseaux neuronaux dans le contexte des cellules gliales et immunitaires environnantes). Cependant, les obstacles inhérents des sections épaisses de tissu incluent la diffusion légère et la pénétration limitée d’anticorps dans le tissu. Ces dernières années, une variété de techniques a été développée et optimisée pour surmonter ces problèmes2,3,4,5,6,7,8 , 9 (en) , 10 Ans et plus , 11 Ans, états-unis ( , 12 Ans, états-unis , 13. Essentiellement, les tissus cibles sont devenus optiquement transparents par traitement avec soit aqueuse2,3,4,5,6,7 ,8,9 ou à base de solvants organiques10,11,12,13 solutions. L’introduction de 3DISCO (imagerie 3D d’organes éclaircis par solvant)11,12 et son successeur uDISCO (imagerie 3D ultime d’organes éclaircis par solvant)13 a fourni un outil relativement rapide, simple et peu coûteux avec d’excellentes capacités de compensation. Les principaux constituants du protocole de compensation sont les solvants organiques tert-butanol (TBA), l’alcool de benzyl (BA), le benzoate de benzyl (BB), et l’éther de diphenyl (DPE). Le développement et l’ajout d’iDISCO (imagerie 3D immunolabeling d’organes éclaircis par solvant)14, un protocole d’immunostaining compatible, ont constitué un autre avantage par rapport aux méthodes existantes et ont permis l’étiquetage des tissus profonds des antigènes d’intérêt, ainsi que le stockage à long terme d’échantillons immunostained. Ainsi, la combinaison de l’iDISCO14 et de l’uDISCO13 permet l’imagerie à haute résolution de protéines étiquetées par anticorps dans de grandes sections de tissus (jusqu’à 1 mm) à l’aide du CLSM conventionnel.
La préservation de la structure complexe d’un organe dans les trois dimensions est particulièrement importante pour le tissu cérébral. Les neurones constituent une sous-population cellulaire très hétérogène avec des morphologies 3D très diverses basées sur leurs projections neurites (revue par Masland15). En outre, le cerveau se compose d’un certain nombre de compartiments et de compartiments, chacun composé de différentes sous-populations cellulaires et les ratios de celui-ci, y compris les cellules gliales et les neurones (examiné par von Bartheld et al.16). En tant que virus neurotrope, le virus de la rage (RABV, examiné par Fooks et coll.17) infecte principalement les neurones, utilisant leurs machines de transport pour voyager dans la direction rétrograde le long des axones du site primaire de l’infection au système nerveux central (SNC). Le protocole décrit ici (figure 1A) permet la détection et la visualisation immunostaining-assistées des cellules RABV et RABV-infectées dans de grandes piles cohérentes d’image obtenues à partir du tissu cérébral infecté. Cela permet une évaluation impartiale et 3D à haute résolution de l’environnement infectieux. Il s’applique aux tissus cérébraux d’une variété d’espèces, peut être effectué immédiatement après la fixation ou après le stockage à long terme d’échantillons de paraformaldéhyde (PFA), et permet le stockage et la réimagerie des échantillons tachés et défrichés pendant des mois.
La résurgence et le développement ultérieur des techniques de défrichement des tissus au cours des dernières années2,3,4,5,6,7,8, 9 (en) , 10 Ans et plus , 11 Ans, états-unis ( <su…
The authors have nothing to disclose.
Les auteurs remercient Thomas C. Mettenleiter et Verena te Kamp d’avoir lu le manuscrit de façon critique. Ce travail a été soutenu par l’Initiative fédérale d’excellence de Mecklembourg Poméranie occidentale et le Fonds social européen (FSE) Grant KoInfekt (ESF/14-BM-A55-0002/16) et une subvention de recherche collaborative intra-muros sur les Lyssavirus à la Friedrich-Loeffler-Institut (Ri-0372).
Reagents | |||
Benzyl alcohol | Alfa Aesar | 41218 | Clearing reagent |
Benzyl benzoate | Sigma-Aldrich | BB6630-500ML | Clearing reagent |
Dimethyl sulfoxide | Carl Roth | 4720.2 | Various buffers |
Diphenyl ether | Sigma-Aldrich | 240834-100G | Clearing reagent |
DL-α-Tocopherol | Alfa Aesar | A17039 | Antioxidant |
Donkey serum | Bio-Rad | C06SBZ | Blocking reagent |
Glycine | Carl Roth | 3908.2 | Background reduction |
Goat serum | Merck | S26-100ML | Blocking reagent |
Heparin sodium salt | Carl Roth | 7692.1 | Background reduction |
Hydrogen peroxide solution (30 %) | Carl Roth | 8070.2 | Sample bleaching |
Methanol | Carl Roth | 4627.4 | Sample pretreatment |
Paraformaldehyde | Carl Roth | 0335.3 | Crystalline powder to make fixative solution |
Sodium azide | Carl Roth | K305.1 | Prevention of microbial growth in stock solutions |
tert-Butanol | Alfa Aesar | 33278 | Sample dehydration for tissue clearing |
TO-PRO-3 | Thermo Fisher | T3605 | Nucleic acid stain |
Triton X-100 | Carl Roth | 3051.2 | Detergent |
Tween 20 | AppliChem | A4974,0500 | Detergent |
Miscellaneous | |||
5 mL reaction tubes | Eppendorf | 0030119401 | Sample tubes |
Coverslip, circular (diameter: 22 mm) | Marienfeld | 0111620 | Part of imaging chamber |
Coverslip, circular (diameter: 30 mm) | Marienfeld | 0111700 | Part of imaging chamber |
Hypodermic needle (27 G x ¾” [0.40 mm x 20 mm]) | B. Braun | 4657705 | Filling of the imaging chamber with clearing solution |
RTV-1 silicone rubber | Wacker | Elastosil E43 | Adhesive for the assembly of the imaging chamber |
Ultimaker CPE 2.85 mm transparent | Ultimaker | 8718836374869 | Copolyester filament for 3D printer to print parts of the imaging chamber |
Technical equipment and software | |||
3D printer | Ultimaker | Ultimaker 2+ | Printing of imaging chamber |
Automated water immersion system | Leica | 15640019 | Software-controlled water pump |
Benchtop orbital shaker | Elmi | DOS-20M | Sample incubation at room temperature (~ 150 rpm) |
Benchtop orbital shaker, heated | New Brunswick Scientific | G24 Environmental Shaker | Sample incubation at 37 °C (~ 150 rpm) |
Confocal laser scanning microscope | Leica | DMI 6000 TCS SP5 | Inverted confocal microscope for sample imaging |
Fiji | NIH (ImageJ) | open source software (v1.52h) | Image processing package based on ImageJ |
Long working distance water immersion objective | Leica | 15506360 | HC PL APO 40x/1.10 W motCORR CS2 |
Vibratome | Leica | VT1200S | Sample slicing |
Workstation | Dell | Precision 7920 | CPU: Intel Xeon Gold 5118 GPU: Nvidia Quadro P5000 RAM: 128 GB 2666 MHz DDR4 SSD: 2 TB |
Primary antibodies | |||
Goat anti-RABV N | Friedrich-Loeffler-Institut | Monospecific polyclonal goat anti-RABV N serum, generated by goat immunization with baculovirus-expressed and His-tag-purified RABV nucleoprotein N Dilution: 1:400 |
|
Rabbit anti-GFAP | Dako | Z0334 | Polyclonal antibody (RRID:AB_10013382) Dilution: 1:100 |
Rabbit anti-MAP2 | Abcam | ab32454 | Polyclonal antibody (RRID:AB_776174) Dilution: 1:250 |
Rabbit anti-RABV P 160-5 | Friedrich-Loeffler-Institut | Monospecific polyclonal rabbit anti-RABV P serum, generated by rabbit immunization with baculovirus-expressed and His-tag-purified RABV phosphoprotein P (see reference 23: Orbanz et al., 2010) Dilution: 1:1,000 |
|
Secondary antibodies | |||
Donkey anti-goat IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |
Donkey anti-mouse IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |
Donkey anti-rabbit IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |
Goat anti-mouse IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |
Goat anti-rabbit IgG | Thermo Fisher Scientific | depending on conjugated fluorophore | Highly cross-absorbed Dilution: 1:500 |