Hier stellen wir ein Protokoll zur Beschreibung einer minimalinvasiven Technik zur Immobilisierung von Kniegelenken in einem Rattenmodell vor. Dieses reproduzierbare Protokoll, das auf dem Modus der Muskel-Lücken-Trennung und der Mini-Inzisionsfähigkeit basiert, eignet sich für die Untersuchung des zugrunde liegenden molekularen Mechanismus der erworbenen Gelenkkontraktur.
Die gemeinsame Kontraktur, die aus einer längeren Gelenkimmobilisierung resultiert, ist eine häufige Komplikation in der Orthopädie. Derzeit ist die Verwendung einer internen Fixierung zur Einschränkung der Kniegelenksbeweglichkeit ein weithin akzeptiertes Modell, um experimentelle Kontraktur zu erzeugen. Die Implantation wird jedoch unweigerlich zu chirurgischen Traumata für die Tiere führen. Mit dem Ziel, einen weniger invasiven Ansatz zu entwickeln, kombinierten wir einen Muskel-Lücken-Trennungsmodus mit einer zuvor gemeldeten Mini-Inzisionsfähigkeit während des chirurgischen Eingriffs: Zwei Mini-Hautschnitte wurden an seitlichem Oberschenkel und Bein gemacht, gefolgt von einer Muskellücke Trennung, um die Knochenoberfläche freizulegen. Das Kniegelenk der Ratte wurde nach und nach durch eine vorkonstruierte innere Fixierung bei ca. 135° Kniebeugung immobilisiert, ohne wesentliche Nerven oder Blutgefäße zu stören. Wie erwartet, ermöglicht diese einfache Technik eine schnelle postoperative Rehabilitation bei Tieren. Die korrekte Position der internen Fixierung wurde durch eine Röntgen- oder Mikro-CT-Scananalyse bestätigt. Der Bewegungsumfang war im immobilisierten Kniegelenk deutlich eingeschränkt als im kontralateralen Kniegelenk, das die Wirksamkeit dieses Modells demonstrierte. Außerdem ergab die histologische Analyse die Entwicklung von faseriger Ablagerung und Haftung in der hinteren-überlegenen Kniegelenkkapsel im Laufe der Zeit. Somit kann dieses Mini-invasive Modell geeignet sein, um die Entwicklung von immobilisierten Kniegelenkkontrakturen nachzuahmen.
Gemeinsame Kontrakturen sind definiert als eine Beschränkung im passiven Bewegungsbereich (ROM) eines Diaarthrodialgelenks1,2. Die aktuellen Therapien zur Vorbeugung und Behandlung von Gelenkkontrakturen haben einige Erfolge erzielt3,4. Der zugrunde liegende molekulare Mechanismus der erworbenen gemeinsamen Kontraktur bleibt jedoch weitgehend unbekannt5. Die Ätiologie der gemeinsamen Kontrakturen in verschiedenen sozialen Gemeinschaften ist sehr vielfältig und umfasst genetische Faktoren, posttraumatische Zustände, chronische Krankheiten und anhaltende Immobilität6. Es ist allgemein anerkannt, dass Immobilität ein kritisches Thema bei der Entwicklung der erworbenen gemeinsamen Verträge7ist. Menschen, die unter größeren gemeinsamen Verträgen leiden, können letztlich zu einer körperlichen Behinderung führen8. Daher ist ein stabiles und reproduzierbares Tiermodell notwendig, um die möglichen pathophysiologischen Mechanismen der erworbenen Gelenkkontraktur zu untersuchen.
Die derzeit aufgebauten Immobilisierungs-induzierten Kniegelenkkontrakturmodelle werden meist durch den Einsatz nicht-invasiver Gipsabgüsse, externer Fixierungen und interner Fixierungen erreicht. Watanabe et al. berichteten über die Möglichkeit der Verwendung von Gipsguss-Immobilisierung auf Rattenkniegelenke9. Durch das Tragen einer speziellen Jacke wird eine Seite des unteren Gelenks der Ratte durch einen Guss immobilisiert. Das Kniegelenk der Ratte kann ohne chirurgisches Trauma vollständig gebeugt bleiben10,11. Jedoch, sowohl die Hüft- und Knöchelgelenkbewegungen sind auch von dieser Form der Immobilisierung betroffen, die den Grad der Muskelatrophie bei Quadrizeps femoris oder Gastrocnemius12erhöhen kann. Darüber hinaus müssen Ödeme und Staus der Hinterbeine vermieden werden, indem die Umwandlung zu festgelegten Zeitpunkten ersetzt wird, was die Kontinuität der Unbeweglichkeit beeinträchtigen kann. Eine weitere akzeptierte Methode zur Etablierung eines Kniegelenk-Kontrakturmodells ist die Verwendung externer chirurgischer Fixierung. Nagai et al. kombinierten Kirschnerdraht und Stahldraht zu einem externen Fixator, der das Kniegelenk auf ca. 140° Flexion13immobilisierte. Bei dieser Methode wird ein Harz verwendet, um die Oberfläche zu bedecken, um Hautkratzer zu verhindern. Obwohl die externe Fixierungsimmobilisierung robust und zuverlässig ist14,15, perkutane Kirschner Drahtstiftspuren können das Infektionsrisiko erhöhen16. Nach unserer eigenen Erfahrung kann die Verwendung der externen Fixierungstechnik die tägliche Aktivität von Ratten aufgrund einer Zunahme des konditionierten Leckverhaltens reduzieren.
Alternativ beschrieben Trudel et al. ein gut akzeptiertes Modell der Gelenkkontraktur im Kniegelenk der Ratte auf der Grundlage einer chirurgischen inneren Fixierung17 (diese Methode wurde von der von Evans und Kollegen18verwendeten methode modifiziert). Diese Methode unterstreicht insbesondere die Bedeutung der Verwendung einer Mini-Inzisionstechnik, um die chirurgischen Wunden zu minimieren. Die effiziente Entwicklung der gemeinsamen Auftragsvergabewurde in diesem Modell 19 nachgewiesen. Das Protokoll, wie eine minimale Sezierung zum Belichten der Knochenoberfläche durchgeführt werden soll, ist jedoch noch unklar20. Auch die genaue Position, an der die Schraube bohrt, ist nicht vollständig verstanden. Die Implantation der inneren Fixierung durch eine subkutane oder submuskuläre Weise ist noch umstritten21. Um diese Probleme zu lösen, haben wir diese Methode modifiziert, indem wir einen geeigneten Muskel-Lücken-Trennmodus einbeziehen, der eine mini-invasive Exposition der Knochenoberfläche und die Platzierung der Implantation durch einen submuskulären Kanal ermöglicht. Dieses Protokoll führte zu einer schnellen postoperativen Rehabilitation bei Ratten nach einer Operation. Die Tiere entwickelten nach der gelenken Immobilisierung einen begrenzten Gelenkbewegungsbereich, der mit morphologischen Veränderungen der kapselförmigen Adhäsion aus der histologischen Analyse übereinstimmte. Wir beschreiben auch eine genaue mögliche Position der gebohrten Schrauben, wie durch Röntgenanalyse oder Mikro-CT-Analyse bestätigt. So zielte diese Studie darauf ab, eine minimal-invasive Technik in einem Kniegelenkskontrakturmodell im Detail zu beschreiben, die durch einen Muskel-Lücken-Trennmodus in Kombination mit einer Mini-Inzisionsmethode etabliert wurde. Wir glauben, dass minimalinvasive Techniken sowohl Tiertraumata reduzieren als auch den pathologischen Prozess der gelenken Flexionskontraktur effektiv nachahmen können.
Diese Studie zielte darauf ab, eine schrittweise Methode der Immobilisierung des Kniegelenks mit einer Mini-invasiven Technik aufzuklären, die eine schnelle postoperative Rehabilitation bei Tieren nach einer Operation ermöglicht. Konventionell wird der Muskel-Lücken-Trennungsansatz als minimalinvasive Technik in der orthopädischen Chirurgie angesehen. Wie erwartet, fanden wir heraus, dass Ratten zu einer normalen Ernährung und Aktivitäten nur einen Tag postoperativ zurückkehren können, was mit der vorherigen Stud…
The authors have nothing to disclose.
Diese Arbeit wurde durch Stipendien der National Natural Science Foundation of China (Nr. 81772368), der Natural Science Foundation der Provinz Guangdong (Nr. 2017A030313496) und des Guangdong Provincial Science and Technology Plan Project (Nr. 2016A02020215225; 2017B090912007). Die Autoren danken Dr. Fei Zhang, M.D. von der Abteilung für Orthopädische Chirurgie, The Eighth Affiliated Hospital of Sun Yat-sen University für seine technische Hilfe bei der Modifikation.
Anerdian | Shanghai Likang Ltd. | 310173 | antibacterial |
Buprenorphine | Shanghai Shyndec Pharmaceutical Ltd. | / | analgesia |
Carprofen | MCE | HY-B1227 | analgesia |
Cross screwdriver | STANLEY | PH0*125mm | tighten the screws |
Electric drill | WEGO | 185 | drill hole(with stainless steel drill 0.9mm;1.0mm) |
Microsurgical instruments | RWD | / | Orthopaedic surgical instruments for animals |
Neomycin | Sigma | N6386 | antibacterial |
Sodium pentobarbital | Sigma | P3761 | anaesthetize |
Stainless Steel screws | WEGO | m1.4*8; m1.2*6 | screw(part of internal fixation) |
Syringe | WEGO | 3151474 | use for plastic plate(part of internal fixation) |
μ-CT | ALOKA | Latheta LCT-200 | in vivo CT scan |