Aquí, presentamos un protocolo detallado para detectar y cuantificar los niveles de proteínas durante la morfogénesis/patogénesis craneofacial mediante inmunoutilización utilizando tejidos craneofaciales de ratón como ejemplos. Además, describimos un método para la preparación y criosección de tejidos duros no descalcificados de ratones jóvenes para inmunostaining.
La inmunomanchación de tejidos proporciona una detección muy específica y fiable de proteínas de interés dentro de un tejido determinado. Aquí describimos un protocolo completo y simple para detectar la expresión de proteínas durante la morfogénesis/patogénesis craneofacial utilizando los tejidos craneofaciales de ratón como ejemplos. El protocolo consiste en la preparación y criosección de tejidos, inmunofluorescencia indirecta, adquisición de imágenes y cuantificación. Además, se describe un método para la preparación y criosección de tejidos duros no descalcificados para la inmunomancha, utilizando tejidos craneofaciales y huesos largos como ejemplos. Estos métodos son clave para determinar la expresión de proteínas y los cambios morfológicos/anatómicos en diversos tejidos durante la morfogénesis/patogénesis craneofacial. También son aplicables a otros tejidos con modificaciones apropiadas. El conocimiento de la histología y la alta calidad de las secciones son fundamentales para extraer conclusiones científicas de los resultados experimentales. Las posibles limitaciones de esta metodología incluyen, entre otras, la especificidad de los anticuerpos y las dificultades de cuantificación, que también se discuten aquí.
La cara es una parte clave de la identidad humana, y se compone de varios tipos diferentes de tejidos, tales como epitelio, músculo, hueso, cartílago, diente. Esos tejidos se derivan de las tres capas germinales: ectoderm, endoderm y mesodermo1,2. Para un correcto patrón y desarrollo de los tejidos craneofaciales, la proliferación celular, la muerte y la diferenciación deben estar altamente coordinadas y reguladas por vías de señalización específicas, como las vías Wnt, Fgf, Hh y Bmp3,4 ,5. Los defectos en la proliferación, supervivencia o diferenciación de las células conducirán a malformaciones craneofaciales, que se encuentran entre los defectos congénitos congénitos que ocurren con mayor frecuencia. Los ratones transgénicos son herramientas útiles para estudiar mecanismos de morfogénesis craneofacial y patogénesis1,2,3,4,5. Comprender los cambios en las estructuras craneofaciales durante el desarrollo y la patogénesis ayudará a aclarar los principios clave del desarrollo, así como los mecanismos de las malformaciones craneofaciales1,2,3 ,4,5.
La tinción de todo el montaje o tejidos seccionados con anticuerpos específicos es una técnica invaluable para determinar la distribución espacial de proteínas de interés 6. Formalmente, la inmunomanchación tisular puede depender de la inmunohistoquímica (IHC) o de la inmunofluorescencia (IF). En comparación con el producto de reacción opaco generado con un sustrato cromogénico como 3,3′-Diaminobenzidina (DAB) por IHC, IF implica el uso de conjugados fluorescentes visibles por microscopía de fluorescencia. Por lo tanto, IF puede diferenciar claramente las células positivas del ruido de fondo, y permite que las imágenes sean analizadas cuantitativamente y mejoradas de una manera sencilla por software como ImageJ y Adobe Photoshop7,8. El enfoque de tinción de montaje completo funciona en pequeños bloques de tejido (menos de 5 mm de espesor),que pueden proporcionar información tridimensional sobre la ubicación de las proteínas/antígenos sin necesidad de reconstrucción de las secciones 9,10 . Sin embargo, en comparación con las secciones de tejido, la inmunomancha de montaje completo consume mucho tiempo y requiere grandes volúmenes de soluciones de anticuerpos. No todos los anticuerpos son compatibles con el enfoque básico de montaje completo. Además, la penetración incompleta de anticuerpos dará lugar a manchas desiguales o falsas manchas negativas. Aquí nos centraremos en la detección de inmunofluorescencia de proteínas/antígenos en tejidos seccionados. Para los tejidos duros (por ejemplo, cabeza, diente, hueso largo), la deposición de calcio durante el desarrollo/patogénesis hace que la muestra sea difícil de seccionar y enjuagar fácilmente durante el tratamiento de inmunomancha11,12. La mayoría de los protocolos actualmente disponibles descalcifican los tejidos duros antes de incrustarlos para facilitar la sección, lo que consume mucho tiempo y puede destruir morfología y antígenos de las muestras si se manipulan incorrectamente11,12. Para superar los problemas, optimizamos un enfoque para la criosección de tejidos duros sin descalcificación, lo que conduce a una mejor visualización de su morfología y distribución de proteínas de señalización.
El protocolo descrito aquí se utiliza para determinar los cambios morfométricos e histológicos en los tejidos craneofaciales de los ratones transgénicos BMP. Específicamente, el protocolo incluye (1) la cosecha y disección de tejidos de la cabeza, (2) sección e inmunomanchación de marcadores experimentales (Ki67, pSmad1/5/9) junto con la tinción TUNEL, (3) imágenes de las secciones mediante microscopio de fluorescencia, y finalmente (4) analizar y cuantificar los resultados. El protocolo para preparar y criosección de tejidos duros sin descalcificación también se describe13. Estos métodos están optimizados para los tejidos craneofaciales. También son aplicables a otros tejidos de varias edades de muestras con modificaciones apropiadas.
Aquí proporcionamos un protocolo detallado para la preparación de la cabeza del ratón y los tejidos óseos no descalcificados, y la criosección para la inmunopreservación de la proliferación celular, la muerte celular y los marcadores de señalización BMP. También detallamos la estrategia para obtener datos cuantitativos de imágenes inmunofluorescentes. Estos métodos también pueden ser aplicables a otros tejidos con modificaciones apropiadas.
Las condiciones para la preparación del…
The authors have nothing to disclose.
Este trabajo fue apoyado por los Institutos Nacionales de Salud (R01DE020843 a Y.M.), la Asociación Internacional de FOP (Y.M.), y una beca en ayuda de la Fundación Nacional de Ciencias Naturales de China (31500788 a J.Y.).
Adhesive tape | Leica | #39475214 | |
Alexa fluor 488-goat anti-Rabbit secondary antibody | Invitrogen | A-11034 | |
Antifade Mountant with DAPI | Invitrogen | P36931 | |
Bovine serum albumin | Sigma | A2153 | |
Coverslips | Fisher Brand | 12-545-E | |
Cryostat | Leica | CM1850 | |
EDTA | Sigma | E6758 | |
Fluorescence microscope | Olympus | BX51 | |
Gelatin | Sigma | G1890 | |
In Situ Cell Death Detection Kit | Millipore | S7165 | |
Microscope slides | Fisher Brand | 12-550-15 | |
OCT Compound | Fisher Healthcare | 23-730-571 | |
Paraformaldehyde (PFA) | Sigma | P6148 | |
Phosphate buffered saline (PBS) | Sigma | P4417 | |
Polyethylene glycol tert-octylphenyl ether | Sigma | T9284 | Triton X-100 |
Proteinase K | Invitrogen | AM2542 | |
Rabbit anti-Ki67 antibody | Cell Signaling Technology | 9129 | Lot#:3; RRID:AB_2687446 |
Rabbit anti-pSmad1/5/9 antibody | Cell Signaling Technology | 13820 | Lot#:3; RRID:AB_2493181 |
Sodium citrate | Sigma | 1613859 | |
Sucrose | Sigma | S9378 | |
Tris | Sigma | 10708976001 |