Summary

小鼠应用慢性约束应激的低成本足迹分析和吊箱试验协议

Published: January 23, 2019
doi:

Summary

由约束应力后的足迹分析和吊箱测试组成的低成本协议可用于评价小鼠模型的运动障碍。

Abstract

在运动障碍患者中经常观察到步态障碍。在用于运动障碍的小鼠模型中, 步态分析是重要的行为测试, 以确定小鼠是否模仿患者的症状。当小鼠模型中没有观察到自发运动表型时, 压力往往会引起运动缺陷。因此, 步态分析, 其次是应力负荷将是一个敏感的方法来评价电机表型的小鼠模型。然而, 研究人员面临着昂贵的仪器的需求, 以自动获得定量结果的步态分析。对于应力, 不需要在触电和强制运行所需的昂贵设备的情况下, 采用简单的方法进行应力加载。因此, 我们引入了一种简单、低成本的协议, 包括用纸张和墨水进行足迹分析, 通过吊箱试验来评估电机的功能, 以及用锥形管约束定义的应力载荷。该方法成功地检测了小鼠的运动缺陷。

Introduction

运动障碍被定义为神经系统的紊乱, 显示自愿或自动运动过度或缺乏1。特别是, 在运动障碍234 的患者中, 步态障碍经常被记录在案。因此, 步态分析是一种适合运动障碍动物模型验证的行为测试。在小鼠, 通过 6, 7级跑步机对以自然速度5 可调速度行走进行了自动步态分析。这些分析自动提供步态的定量结果。另一种检测步态干扰的方法称为足迹分析。用墨水标记脚底后, 老鼠在纸上行走, 并对脚印进行分析。最初, 凡士林和粉状木炭被用来显示足迹8, 然后被测谎仪纸9上的墨水和摄影纸上的摄影开发商取代.与其他方法相比, 使用墨水和纸张的一种更便宜、毒性更小的方法至今仍是11。与自动分析567相比, 足迹分析的成本较低, 对于没有充足研究资金的研究人员评估小鼠模型中的运动障碍将是有用的.

吊箱试验是一种使用铁丝笼盖12和金属丝网13的四肢悬挂试验.盒子是一种在盒子顶部沿中心条旋转网盖的装置。除了步态分析外, 测试还可以低成本、轻松地进行。因此, 除了本协议中的占地面积分析外, 我们还进行了吊箱测试, 以评估抓地力和平衡。

压力会诱发运动障碍的症状14,15。即使在161718的运动障碍小鼠模型中没有观察到自发运动表型, 也往往是由几个慢性应力引起的。约束是小鼠压力负荷的常用方法之一, 因为动物身体没有受到伤害, 与专用装置电击、使用跑步机强制运行等其他方法相比, 成本较低。通过将老鼠限制在一个洞50毫升锥形管中进行的控制, 比其他方法 (如丝网过滤器、带状肢体和用纱布包裹动物) 更容易.本文总结了管道约束后的占地面积分析和吊箱试验的方案。该协议将帮助我们使用没有自发运动表型的运动障碍的小鼠模型。

Protocol

所有动物实验都是以人道的方式进行的。吉吉医科大学机构动物实验委员会批准了这项研究。这项研究是根据《动物实验制度条例》和《日本 mext 管辖下的学术研究机构动物实验和相关活动的适当进行的基本准则》进行的。本协议中使用的老鼠已经在前面描述过21。 1. 吊箱测试 记录每个鼠标的重量。标记尾巴的笔的个人歧视 (例如,一条线, 双?…

Representative Results

本方案采用了at1a3 (at1a3+/-)的杂合雄性小鼠模型, 作为快速发病肌张力障碍帕金森病和野生类型同学的模型。atp1a3+/–显示 前肢和后肢的步幅明显短于4周大的野生类型 (图 5a和图 5A, 开放圆和正方形)。”压力” atp1a3+/-显示两个肢体的步幅长度明显短于8周大的”无应力” atp1a3+/-…

Discussion

足迹分析和吊箱测试是对小鼠运动功能的简单而廉价的行为测试。通过这些测试, 成功地检测出了几种小鼠模型中的神经行为表型。例如, 肌萎缩侧索硬化症24的步长缩短, 在华支扩张25中增加了不对称步幅的长度, 增加了亨廷顿病26和肌张力障碍27的重叠长度,通过足迹分析, 显示了共济失调 28<sup class…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了日本科学促进协会 (jsps) kakenhi (科学研究赠款 c)、18k07373 (h. s.) 赠款和私立大学补贴的支持。

Materials

Hanging box O’hara & Co. http://ohara-time.co.jp/products/wire-hanging-test/
Marking pen ZEBRA MO-120-MC-BK
Goal box O’hara & Co. http://ohara-time.co.jp/products/balanced-beam-test/ Accessory for apparatus of balanced beam test
Boxes O’hara & Co. Side wall of runway
Black ink Shin-asahi
Red ink Maruyamakogyo BC-6
Disposable Petri Dish Corning 351008 Petri dishe (35 mm in diameter)
Askul Multipaper Super White J Monochrome A3 Askul 701-712 White paper (29.7 cm x 42 cm x 0.09mm)
50 mL Conical tube Corning 430829
Square drill KAKURI Corporation DIY FACTORY (K32-0313)

Referenzen

  1. Warner, T. T. Movement disorders. Practical Guide to Neurogenetics. , (2008).
  2. Brashear, A., DeLeon, D., Bressman, S. B., Thyagarajan, D., Farlow, M. R., Dobyns, W. B. Rapid-onset dystonia-parkinsonism in a second family. Neurology. 48 (4), 1066-1069 (1997).
  3. Linazasoro, G., Indakoetxea, B., Ruiz, J., Van Blercom, N., Lasa, A. Possible sporadic rapid-onset dystonia-parkinsonism. Movement Disorders. 17 (3), 608-609 (2002).
  4. Svetel, M., Ozelius, L. J., et al. Rapid-onset dystonia-parkinsonism: case report. Journal of Neurology. 257 (3), 472-474 (2010).
  5. Vrinten, D. H., Hamers, F. F. T. “CatWalk” automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. PAIN. 102 (1), 203-209 (2003).
  6. Berryman, E. R. DigigaitTM quantitation of gait dynamics in rat rheumatoid arthritis model. Journal of Musculoskeletal and Neuronal Interactions. 9 (2), 89-98 (2009).
  7. Beare, J. E., Morehouse, J. R., et al. Gait analysis in normal and spinal contused mice using the TreadScan system. Journal of Neurotrauma. 26 (11), 2045-2056 (2009).
  8. Rushton, R., Steinberg, H., Tinson, C. Effects of a single experience on subsequent reactions to drugs. British Journal of Pharmacology and Chemotherapy. 20, 99-105 (1963).
  9. Lee, C. C., Peters, P. J. Neurotoxicity and behavioral effects of thiram in rats. Environmental health perspectives. 17, 35-43 (1976).
  10. van der Zee, C. E., Schuurman, T., Traber, J., Gispen, W. H. Oral administration of nimodipine accelerates functional recovery following peripheral nerve damage in the rat. Neuroscience Letters. 83 (1-2), 143-148 (1987).
  11. Leroy, T., Stroobants, S., Aerts, J. -. M., D’Hooge, R., Berckmans, D. Automatic analysis of altered gait in arylsulphatase A-deficient mice in the open field. Behavior Research Methods. 41 (3), 787-794 (2009).
  12. Sango, K., McDonald, M. P., et al. Mice lacking both subunits of lysosomal beta-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nature Genetics. 14 (3), 348-352 (1996).
  13. Deacon, R. M. J. Measuring the Strength of Mice. Journal of Visualized Experiments. (76), e2610 (2013).
  14. Djamshidian, A., Lees, A. J. Can stress trigger Parkinson’s disease?. Journal of Neurology, Neurosurgey, and Psychiatry. 85 (8), 879-882 (2014).
  15. Brashear, A., Dobyns, W. B., et al. The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3. Brain. 130 (Pt 3), 828-835 (2007).
  16. Kirshenbaum, G. S., Saltzman, K., Rose, B., Petersen, J., Vilsen, B., Roder, J. C. Decreased neuronal Na+,K+-ATPase activity in Atp1a3 heterozygous mice increases susceptibility to depression-like endophenotypes by chronic variable stress. Genes, Brain and Behavior. 10 (5), 542-550 (2011).
  17. DeAndrade, M. P., Yokoi, F., van Groen, T., Lingrel, J. B., Li, Y. Characterization of Atp1a3 mutant mice as a model of rapid-onset dystonia with parkinsonism. Behavioral Brain Research. 216 (2), 659-665 (2011).
  18. Sugimoto, H., Ikeda, K., Kawakami, K. Heterozygous mice deficient in Atp1a3 exhibit motor deficits by chronic restraint stress. Behavioral Brain Research. 272, 100-110 (2014).
  19. Zimprich, A., Garrett, L., et al. A robust and reliable non-invasive test for stress responsivity in mice. Frontiers in Behavioral Neuroscience. 8, 125 (2014).
  20. Buynitsky, T., Mostofsky, D. I. Restraint stress in biobehavioral research: recent developments. Neuroscience and Biobehavioral Reviews. 33 (7), 1089-1098 (2009).
  21. Ikeda, K., Satake, S., et al. Enhanced inhibitory neurotransmission in the cerebellar cortex of Atp1a3-deficient heterozygous mice. The Journal of Physiology. 591 (13), 3433-3449 (2013).
  22. Crawley, J. N. Motor functions. What’s Wrong with My Mouse?. , (2007).
  23. . R: A language and environment for statistical computing Available from: https://www.R-project.org/ (2014)
  24. Wils, H., Kleinberger, G., et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proceedings of the National Academy of Sciences of the United States of America. 107 (8), 3858-3863 (2010).
  25. Eilam, R., Peter, Y., et al. Selective loss of dopaminergic nigro-striatal neurons in brains of Atm-deficient mice. Proceedings of the National Academy of Sciences of the United States of America. 95 (21), 12653-12656 (1998).
  26. Lin, C. -. H., Tallaksen-Greene, S., et al. Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Human Molecular Genetics. 10 (2), 137-144 (2001).
  27. Dang, M. T., Yokoi, F., et al. Generation and characterization of Dyt1 ΔGAG knock-in mouse as a model for early-onset dystonia. Experimental Neurology. 196 (2), 452-463 (2005).
  28. Glynn, D., Drew, C. J., Reim, K., Brose, N., Morton, A. J. Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits. Human Molecular Genetics. 14 (16), 2369-2385 (2005).
  29. Becker, E. B. E., Oliver, P. L., et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proceedings of the National Academy of Sciences of the United States of America. 106 (16), 6706-6711 (2009).
  30. Heck, D. H., Zhao, Y., Roy, S., LeDoux, M. S., Reiter, L. T. Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors. Human Molecular Genetics. 17 (14), 2181-2189 (2008).
  31. Kirshenbaum, G. S., Dawson, N., et al. Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na+,K+-ATPase α3 missense mutant mice. PLoS ONE. 8 (3), e60141 (2013).
  32. Klein, A., Wessolleck, J., Papazoglou, A., Metz, G. A., Nikkhah, G. Walking pattern analysis after unilateral 6-OHDA lesion and transplantation of foetal dopaminergic progenitor cells in rats. Behavioral Brain Research. 199 (2), 317-325 (2009).
  33. Geldenhuys, W. J., Guseman, T. L., Pienaar, I. S., Dluzen, D. E., Young, J. W. A novel biomechanical analysis of gait changes in the MPTP mouse model of Parkinson’s disease. PeerJ. 3 (Pt 7), e1175 (2015).
  34. Cecchi, M., Khoshbouei, H., Morilak, D. A. Modulatory effects of norepinephrine, acting on alpha1 receptors in the central nucleus of the amygdala, on behavioral and neuroendocrine responses to acute immobilization stress. Neuropharmacology. 43 (7), 1139-1147 (2002).
  35. Chu, X., Zhou, Y., et al. 24-hour-restraint stress induces long-term depressive-likephenotypes in mice. Scientific Reports. 6, 32935 (2016).
  36. Freeman, M. L., Sheridan, B. S., Bonneau, R. H., Hendricks, R. L. Psychological Stress Compromises CD8+ T cell control of latent herpes simplex virus type 1 infections. The Journal of Immunology. 179 (1), 322-328 (2007).
  37. Lauretti, E., Di Meco, A., Merali, S., Praticò, D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson’s disease. Translational Psychiatry. 6, e733 (2016).
  38. Quartermain, D., Stone, E. A., Charbonneau, G. Acute stress disrupts risk assessment behavior in mice. Physiology and Behavior. 59 (4-5), 937-940 (1996).
  39. Bannon, D. . The Behavioural effects of stress and aluminum toxicity on a mouse model of amyotrophic lateral sclerosis Parkinsonism-dementia complex. , 1-186 (2015).

Play Video

Diesen Artikel zitieren
Sugimoto, H., Kawakami, K. Low-cost Protocol of Footprint Analysis and Hanging Box Test for Mice Applied the Chronic Restraint Stress. J. Vis. Exp. (143), e59027, doi:10.3791/59027 (2019).

View Video