在这里, 我们提出了一个协议, 以产生伪型粒子在 bsl-2 设置纳入高致病性病毒中东呼吸综合征和严重急性呼吸综合征冠状病毒的尖峰蛋白。这些伪类型粒子包含一个荧光素酶报告基因, 允许病毒进入目标宿主细胞的定量。
该协议的目的是产生冠状病毒 (cov) 尖峰 (s) 融合蛋白假型粒子与小鼠白血病病毒 (mlv) 核心和荧光素酶记者, 使用一个简单的转染程序广泛可用的 hek-293t 细胞系。一旦从生成细胞中形成和释放, 这些伪病毒体就会整合荧光素酶报告基因。由于它们表面只含有异源冠状病毒尖峰蛋白, 因此在进入步骤中, 这些粒子的行为就像它们的原生冠状病毒对应物。因此, 它们是研究病毒进入宿主细胞的本地病毒的优秀代孕者。在成功进入和感染目标细胞后, 荧光素酶记者被整合到宿主细胞基因组中并表达。使用简单的荧光素酶检测, 被转移的细胞可以很容易地量化。该程序的一个重要优点是, 它可以在生物安全 2级 (bsl-2) 设施中进行, 而不是在处理中东呼吸综合征冠状病毒 (中东呼吸综合征冠状病毒) 等高致病性冠状病毒时所需的 bsl-3 设施。严重急性呼吸综合征冠状病毒 (sars-cov)。另一个好处来自于它的多功能性, 因为它可以应用于属于所有三类病毒融合蛋白的包膜蛋白, 如 i 类流感血凝素 (ha) 和埃博拉病毒糖蛋白 (gp), ii 类 semliki 森林病毒 e1蛋白, 或 iii 类泡状口炎病毒 g 糖蛋白。该方法的一个局限性是, 它只能重述由所研究的包膜蛋白介导的病毒进入步骤。对于研究其他病毒生命周期步骤, 需要其他方法。这些伪型粒子可用于研究宿主细胞易感性和取向, 并测试病毒进入抑制剂对解剖所使用的病毒进入途径的影响的许多应用的例子。
宿主细胞进入是病毒感染生命周期的初始步骤。对于包膜病毒, 这包括结合到单个宿主细胞受体或几个受体, 然后是病毒和细胞膜的融合。这些基本功能是由病毒包膜糖蛋白1,2来实现的。冠状病毒包膜糖蛋白被称为尖峰 (s) 蛋白, 是 i 类病毒融合蛋白2,3,4, 5,6的成员。研究病毒包膜糖蛋白对于了解特定病毒的许多重要特征至关重要, 例如: 生命周期开始、宿主和细胞取向、物种间传播、病毒间传播以及宿主细胞进入途径。病毒伪型粒子, 也被称为伪病毒, 是强大的工具, 使我们能够很容易地研究病毒融合蛋白的功能。假型颗粒或伪病毒是嵌合病毒, 由一个替代病毒核组成, 表面有异源病毒包络蛋白。该协议的主要目的是展示如何获得冠状病毒尖峰伪型粒子, 这些粒子是基于小鼠白血病病毒 (mlv) 的核心, 并包含荧光素酶报告基因。以高致病性严重急性呼吸综合征 (sars) 和中东呼吸综合征 (mers) 冠状病毒为例, 提出了用尖峰蛋白产生假型颗粒的方法。该协议描述了所涉及的转染过程, 如何感染易感靶细胞, 以及通过荧光素酶检测的传染性定量。
由于伪病毒的进入步骤在其表面受冠状病毒 s 的控制, 它们进入细胞的方式与本地对应细胞相似。因此, 他们是功能性传染性检测的优秀代孕者。伪型粒子通常来自亲本模型病毒, 如逆转录酶病毒 (mlv7、8、9、10、11、12、13 ),14,15,16,17,18,19,20,21,22和慢病毒人体免疫机能丧失病毒–艾滋病毒23、24、25、26、27、28、29,30,31,32,33,34,35) 或横纹肌病毒 (泡状口腔炎病毒-vsv 36,39,40,41,42, 43,44,45,46,47). 当用于伪分型时, 父母病毒的基因组被修改以去除基本基因, 使其在完成完整的复制周期方面有缺陷。此功能允许它们用于中间生物安全设施 (bsl-2), 与使用需要更高生物安全设施的高致病性原生病毒 (bsl-3、bsl-4 等不太容易获得) 相比, 这是一个重要的优势。进行病毒进入研究。在这里, 风险3病原体 sars-cov 和 mers-cov 的 s 蛋白被用作病毒包膜蛋白被纳入 mlv 伪型粒子的例子, 产生 sars-cov s 和 mers-cov s 伪病毒 (分别为 sars-spp 和 mers-spp)。这些伪病毒已成功地用于研究这些病毒的进入事件48,49, 50,51.另一个优点是, 这里描述的技术并不局限于伪型冠状病毒 s 蛋白: 它是非常灵活的, 可以用来纳入所有三类病毒融合蛋白的代表。这方面的例子包括流感血凝素 (ha, i 类)52、埃博拉病毒糖蛋白 (gp i 类)、半病毒 semliki 森林病毒 (sfv, ii 类) 的 e1 蛋白和 vsv 糖蛋白 (g, iii 类) 53。此外, 一种以上的病毒糖蛋白可以共同结合成一个伪型粒子, 如在流感 ha-和 na-假型颗粒51的情况下。
根据 bartosch 等人的工作, 该协议描述了 mlv 伪型粒子的生成与三种质粒共同转染策略使用广泛可用和高度可转换的 hek-293t 细胞系54. 第一个质粒编码 mlv 核心基因的口子和pol , 但缺乏 mlv 包络 encodes基因。第二个质粒是一个转移载体, 编码萤火虫荧光素酶报告基因, mlv rna 包装信号, 以及 5 ‘-和 3 ‘-侧翼 mlv 长终端重复 (ltr) 区域。第三个质粒编码感兴趣的融合蛋白, 在这种情况下, 无论是 sars-cov s 或中东呼吸综合征冠状岩合酶 s 蛋白。在使用转染试剂共同转染这三个质粒时, 病毒 rna 和蛋白质在转染细胞内表达, 允许产生伪型粒子。由于 mlv 被用作伪病毒主干, 这发生在质膜上: 含有荧光素酶基因报告和包装信号的 rna 被封装到新生的颗粒中, 这些颗粒也包含血浆膜表达的冠状病毒尖峰蛋白质。从细胞中发芽的颗粒表面含有冠状病毒 s 蛋白, 并被收获用于传染性检测。由于伪型粒子含有冠状病毒 s 蛋白, 而不是 mlv 包膜蛋白, 当用于感染细胞时, 它们的行为就像它们的本地冠状病毒对应的进入步骤。然后, 含有荧光素酶报告和侧翼 ltr 的病毒 rna 在细胞内释放, 而逆转录病毒聚合酶活性使其逆转录酶转化为 dna 并整合到宿主细胞基因组中。然后, 用简单的荧光素酶活性测定方法对病毒伪型颗粒在受感染细胞中的传染性进行定量。由于整合到宿主细胞基因组中的 dna 序列只包含荧光素酶基因, 而没有任何 mlv 或冠状病毒蛋白编码基因, 因此它们的使用本质上比具有复制能力的原生病毒更安全。
除了是更安全的代孕药物和高度适应性, 允许纳入各种包膜糖蛋白, 这里描述的伪类型粒子也是高度通用的, 可以用来研究病毒进入的许多方面。这包括但不限于: 检测宿主细胞对病毒感染的易感性, 分析包住病毒使用的细胞进入途径, 研究药理抑制剂和药物筛选的效果, 进行中和抗体检测, 描述宿主细胞进入的包膜病毒, 不能培养, 并产生病毒载体的基因传递, 稳定的细胞表达的兴趣基因, 或基因沉默。
该协议描述了一种在 bsl-2 设置中有效生成含有风险3冠状病毒 s 蛋白 (sars-cov 和 mers-cov) 的假型粒子的方法。这些颗粒, 其中包含荧光素酶报告基因, 使我们能够很容易地量化冠状病毒 s 介导的进入事件, 通过相对简单的荧光素酶检测48,49,50,51。在使用允许细胞的感染性检测中, 我们证实所测量的荧光素酶活性取决于颗粒的浓度。此外, ace2 和 dpp4 受体转染允许更有效地进入许可差的细胞系, 如 hek-293t 细胞。该方法对其他病毒包膜糖蛋白有很强的适应性, 已被广泛使用48,49,50,51, 52,53, 55、56、57、58、59, 通常是为了补充其他检测, 如生化分析或本地病毒感染。
我们在这里描述的协议是基于逆转录酶病毒 mlv, 其中包含了一个荧光素酶记者。但是, 必须强调的是, 已经成功地开发了一系列非常广泛的其他伪类型系统来包装冠状病毒 s12、13、25、26、30,31,32和其他病毒包膜糖蛋白10,11,14,16, 17, 23,24,29,33,38,40,42,44,46. 其中一些其他系统以常用的 mlv 抗逆转录病毒核心7、8、9、10、11、12、13为基础 ,14,15,16,17, 18,19, 20,或基于广泛使用的慢病毒 hiv-1使用不同策略的伪分型系统23、24、25、26、27、28、29、30 ,31,32,33,34,35, 或以横纹布病毒泡状口炎病毒 (vsv) 为核心, 这允许纳入广泛的品种包膜糖蛋白, 并再次采用各种策略使用 37,38,39, 40,41,42, 43 44, 45,46,47.此外, 其他记者如荧光蛋白如 gfp11、13和 rfp36, 或其他酶, 如β-半乳糖苷酶16,17和分泌碱性磷酸酶 (seap)42已成功地用于测量。此外, 在本协议中提出的分析中, 采用瞬态转染来表达 mlv 和 cov s 基因和蛋白质。然而, 还有其他表达策略, 例如生成用于生产伪类型病毒的稳定细胞系7,14。由于每个系统都有其优点和缺点, 在决定哪种伪类型系统最适合调查员的需要时, 必须考虑以下重要参数: 伪 virion 核心 (mlv、hiv-1、vsv 或其他), 如何选择性的伪分型核心是在纳入一个特定的病毒包络糖蛋白, 检测读数的报告 (transfection, 荧光素酶, seap 或其他), 和转染策略 (参与联合转染的质粒的数量,转染或生成稳定的细胞系)。
该方法中有许多重要步骤需要强调。细胞密度, 特别是 hek-293t17 生产者细胞系的密度是确保成功转染的关键因素。在40-60% 的融合范围内的细胞密度被认为是最佳的。密度越高, 转染效率越低, 颗粒产量也越低。另外, 重要的是要记住, hek-293t17 细胞的粘附程度低于其他细胞系。在处理这些问题时, 应谨慎行事, 以避免不必要地将它们分离。一种选择是用多 d-赖氨酸处理细胞培养塑料表面, 以增强粘附。此外, 较高的细胞通道往往导致转染率很低。在 hek-293t17 细胞中添加转染试剂后, 还必须记住细胞的渗透率增加。这就是为什么在这一点上, 最好避免使用含有抗生素的介质, 因为它们可能会增加细胞毒性。在收集伪型粒子之前, 检查转染 hek-29nt17 细胞上清液的颜色。通常情况下, 经过48小时的转染后, 细胞培养介质的颜色采取橙色-粉红色的色彩。黄色介质通常转化为伪型颗粒产量低, 通常是细胞播种密度或高通道数问题的结果。
在该协议中, 伪类型粒子生产是以6孔板格式进行的。为了增加产生的颗粒量, 可以用相同的质粒混合转染6井板的几口井, 并将上清液汇集在一起。然后水池可以被澄清, 过滤和别名。或者, 为了扩大生产规模, 可以使用其他种类的容器 (例如25或75厘米2瓶)。在这种情况下, 应相应地扩大转染条件。在该协议中, 感染率检测使用24孔板格式和计步仪进行, 一次只能测量一个管。对于高吞吐量的筛选, 其他格式也是可能的, 如96孔板格式和板式读卡器的发光计。荧光素酶测定的卷和试剂需要相应地进行调整。在-80°c 条件下将假型颗粒储存在低温中, 可在几个月内保持其稳定性, 而不会显著降低传染性。不建议对它们进行冻融循环, 因为随着时间的推移, 这将减少它们的传染性。因此, 最好将它们存放在小的等价物中, 如 0.5–1 ml, 并在感染前解冻。
这里介绍的方法有几个限制。一个重要的事实是, 伪类型粒子只重述病毒进入事件。要分析传染性生命周期中的其他步骤, 还需要进行其他检测。此外, 当 mlv 颗粒在质膜上发芽时, 重要的是要记住, 正在研究的包膜糖蛋白还需要流量到质膜上, 以便在生产过程中融入伪病毒。因此, 重要的是要知道在细胞中, 特定的病毒包络糖蛋白在转染条件下的表达, 例如通过免疫荧光法的可视化亚细胞定位, 或者通过检查内的保留信号蛋白质。此外, 虽然该协议描述了生产和测试传染性的步骤, 但它没有详细说明如何测量病毒包膜糖蛋白与伪类型粒子的结合。一种方法是对颗粒的浓缩溶液进行西方印迹检测, 如前所述, 对中东呼吸综合征冠状病毒 s 的 50,51进行检测。在这些检测中, 将中东呼吸综合征冠状病毒的 s 包络糖蛋白与 mlv 的衣壳 (p30) 蛋白一起进行研究, 使我们能够将 s 蛋白正常化地纳入颗粒。分析病毒包膜糖蛋白纳入伪病毒的其他例子是在 hiv-1 病毒假病毒系统32中进行 sars-cov s 的整合, 埃博拉糖蛋白 (gp) 在另一种 mlv 伪型中的应用颗粒系统17, 流感血凝素 (ha) 和神经氨酸酶 (na) 在 vsv 伪病毒 38.在描述伪型粒子生产方面最近的一个发展是使用了创新的成像设备, 如纳米视觉: 它使我们能够直接对50的病毒粒子进行可视化、量化和大小。该装置提供了关于整体颗粒生产的详细信息;然而, 重要的是要记住, 它不提供有关包络糖蛋白结合的信息。这些多功能伪病毒粒子的应用前景是使用单粒子跟踪、微流体和总内部反射荧光显微镜60,61 分析单个病毒融合事件 ,62。该方法成功地应用于流感病毒和猫科动物冠状病毒颗粒以及甲型和 na 伪型的基于 vsv 的伪病毒63。目前正在开发将此类技术应用于基于 mlv 的核黄病毒 s 型假型粒子的应用。
The authors have nothing to disclose.
我们要感谢惠特克和丹尼尔实验室的所有成员提出的有益意见。国家卫生研究院提供了研究资金, 其中包括 r21 ai111085 和 r01 ai135270。t. t. 感谢康奈尔大学总统生命科学研究金和国家科学基金会研究生研究奖学金计划对第1号赠款的支持。dge-165041。法律公告感谢塞缪尔·弗莱明家庭研究生奖学金和国家科学基金会研究生研究金计划的支持。dge-165041。这项工作也得到了国家科学基金会1504846的支持 (对 s. d. 和 g. r. w.)。
Human embryonic kidney (HEK) HEK-293T/17 cells | ATCC | CRL-11268 | Clone 17 cells are highly competent for transfection. |
African green monkey kidney epithelial Vero-E6 cells | ATCC | CRL-1586 | |
Human hepatic Huh-7 cells | Japan National Institutes of Biomedical Innovation, Health and Nutrition | JCRB0403 | |
Inverted light microscope with 10 × objective | Nikon | TS100 | |
Dulbecco’s modification of Eagle's medium (DMEM) with 4.5 g/L glucose, L-glutamine without sodium pyruvate | Corning Mediatech | 10-017-CV | |
Heat-inactivated fetal bovine serum (FBS) | Thermo Fisher Scientific, Gibco | 1614071 | |
1 M N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES) | Corning Mediatech | 25-060-Cl | |
100 × penicillin-streptomycin (PS) solution | Corning Mediatech | 30-002-Cl | |
Dulbecco’s phosphate buffered saline (DPBS) with Ca2+ and Mg2+ | Corning Mediatech | 21-030-CV | |
0.25% trypsin, 2.21 mM ethylenediaminetetraacetic acid (EDTA) 1 × solution | Corning Mediatech | 25-053-Cl | |
Cell counting slides with grids | Kova | 87144 | |
Opti-minimal essential medium (Opti-MEM) | Thermo Fisher Scientific, Gibco | 31985-070 | |
Lipofectamine 2000 transfection reagent | Thermo Fisher Scientific, Invitrogen | 11668-027 | |
0.45 µm pore-size sterile filter | Pall | 4184 | |
10 mL syringes | BD | 309604 | |
5 × luciferase assay lysis buffer | Promega | E1531 | |
Luciferin, substrate for luciferase assay | Promega | E1501 | |
Sterile water | VWR | E476-1L | |
GloMax 20/20 luminometer | Promega | 2030-100 |