Summary

一种用于水降解光催化过程的高效双氧化二碘微球合成方法

Published: March 29, 2019
doi:

Summary

本文介绍了一种合成方法, 以获得在 Uv-a-可见光照射下, 在水中对环丙沙星等有机污染物进行光催化去除的高效微球。

Abstract

氧钡是一种很有前途的太阳-环境光催化材料。鉴于这类材料的物理结构与其光催化性能密切相关, 有必要对合成方法进行标准化, 以获得功能最强的结构, 从而获得最高的光催化性能效率。在这里, 我们报告了一个可靠的途径, 以获得 bioi 微球通过溶热过程, 使用 Bi (NO3)3和碘化钾 (ki) 作为前体和乙二醇作为模板。该合成在一个150毫升的高压灭菌器中标准化, 在126°c 的18小时内进行。这就产生了2-3 微米大小的介孔微球, 具有相关的比表面积 (61.3 米2/)。缩短合成过程中的反应时间会产生非晶态结构, 而较高的温度会导致微球的孔隙率略有增加, 对光催化性能没有影响。这些材料在 Uv-a/可见光照射下具有光活性, 可使抗生素环丙沙星在水中降解。这种方法已被证明是有效的实验室间测试, 获得类似的 BiOI 微球在墨西哥和智利的研究小组。

Introduction

迄今为止, 已经合成了大量半导体, 其目的是在可见光照射下实现高活性的光催化剂, 以降解有机化合物或以氢1,2的形式产生可再生能源。氧氧化物 (x = cl、br 或 i) 是这种应用的候选产品, 因为它们在可见光或模拟阳光照射具有较高的光催化效率, 为 3,4。氧卤化物的带隙能 (e g)随卤化物原子序数的增加而减小;因此, BiOI 是显示最低活化能 (Eg = 1.8 ev)5的材料。通过范德华力与钡原子结合的碘化物原子, 产生了一个有利于电荷载体向半导体表面迁移的电场, 从而触发光催化过程4,6。此外, 晶粒的结构在电荷载体的分离中具有关键的作用。(001) 平面和三维结构 (如微球) 中的高取向结构可促进辐照时的电荷载体分离, 从而提高光催化性能7,8,9,10,11,12. 鉴于此, 有必要开发可靠的合成方法, 以获得提高氧卤化钡材料光活性的结构。

到目前为止, 溶热法是获得 bioi 微球 13141516的最常用和研究的途径。还报告了使用离子液体的一些方法 17, 尽管与这些方法有关的费用可能更高。微球结构通常是使用有机溶剂, 如乙二醇, 作为协调剂形成金属烷氧基, 导致 [Bi 2o2]2 +种类逐渐自组装 18,19. 与乙二醇一起使用溶热路线, 通过改变反应中的温度和反应时间4、18等关键参数, 促进了不同形态的形成。关于获得 BiOI 微球的合成方法, 有大量的文献, 这些文献显示了实现高光活性结构的对比信息。该详细协议旨在展示一种可靠的合成方法, 以获得生物交换微球在水中污染物光催化降解方面的高功能。我们打算帮助新的研究人员成功地获得这种材料, 避免与合成过程有关的最常见的陷阱。

Protocol

注: 在使用化学试剂之前, 请阅读所有材料安全数据表 (MSDS)。穿着实验室外套和手套, 遵守所有的安全规程。在光催化测试中佩戴紫外线防护安全眼镜。请注意, 与前体相比, 纳米材料可能会产生重要的危险影响。 1. BiOI 微球的制备 对于溶液 1, 在玻璃烧杯中的60毫升乙二醇中溶解2.9104 克的硝酸钡 (BI(No3)3;对于溶液 2, 将 0….

Representative Results

采用该合成方法成功合成了 BiOI 的三维微结构。图 1a-c所示的 sem 图像证实了这一点。微球是由 [Bi2o2]2 + 的层流结构形成的, 由两个碘化原子1结合。微球的形成取决于太阳热过程的温度和时间, 因为这些参数决定了氧卤化物3、4、<su…

Discussion

我们认为前体的混合物是 BiOI 微球溶热合成的关键步骤。KI 溶液缓慢滴入 Bi (NO3) 3 溶液 (最大为 1 mlmin)对于获得介孔微球至关重要, 因为它允许 [bi2o2]+ 2 板的缓慢形成和自组装, 然后与碘化物原子结合形成 BiOI 层压板。层板是溶热步骤中微球的砖 (图 1)。温度和反应时间是太阳热合成的关键因素, 因为高温最初允许 [bi2o2]+</su…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

提交人感谢墨西哥城市技术秘书通过资助的主管西/2016年主管项目和国家科学和技术发展基金为开展这项工作提供的资源。智利 (FONDECYT 11170431)。

Materials

Bismuth(III) nitrate pentahydrate Sigma Aldrich 383074 ACS reagent, ≥98.0%
Potassium iodide Sigma Aldrich 746428 ACS reagent, ≥98.0%
Ethylene glycol Sigma Aldrich 324558 Anhydrous, 99.8%
Ethanol Meyer 5405 Technical Grade, 96%
Ciprofloxacin Sigma Aldrich 17850 HPLC, ≥98.0%
Cary 5000 UV-Vis-NIR spectrophotometer Agilent Used for the Band gap determination by the Tauc model.
JSM-5600 Scanning Electron Microscope JOEL Used for the SEM images.
Autosob-1 Qantachrome Instruments Used for the determination of surface area and pore diameter.
TOC-L Total Organic Carbon Analyzer Shimadzu Used for determination of total organic carbon in water samples.
Bruker AXS D8 Advance – X-ray Diffraction Bruker Determination of crystal structure and crystallite size

Referenzen

  1. Yu, C., Zhou, W., Liu, H., Liu, Y., Dionysiou, D. D. Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion. Chemical Engineering Journal. 287, 117-129 (2016).
  2. Wang, H., et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews. 43 (15), 5234-5244 (2014).
  3. Chou, S. Y., Chen, C. C., Dai, Y. M., Lin, J. H., Lee, W. W. Novel synthesis of bismuth oxyiodide/graphitic carbon nitride nanocomposites with enhanced visible-light photocatalytic activity. RSC Advances. 6, 33478-33491 (2016).
  4. Siao, C. W., et al. Controlled hydrothermal synthesis of bismuth oxychloride/bismuth oxybromide/bismuth oxyiodide composites exhibiting visible-light photocatalytic degradation of 2-hydroxybenzoic acid and crystal violet. Journal of Colloid and Interface Science. 526, 322-336 (2018).
  5. Meng, X., Zhang, Z. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches. Journal of Molecular Catalysis A: Chemical. 423, 533-549 (2016).
  6. Wang, Y., Deng, K., Zhang, L. Visible light photocatalysis of BiOI and its photocatalytic activity enhancement by in situ ionic liquid modification. Journal of Physical Chemistry C. 115 (29), 14300-14308 (2011).
  7. Xiao, X., Zhang, W. De Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. Journal of Materials Chemistry. 20 (28), 5866-5870 (2010).
  8. Chen, C. C., et al. Bismuth oxyfluoride/bismuth oxyiodide nanocomposites enhance visible-light-driven photocatalytic activity. Journal of Colloid and Interface Science. 532, 375-386 (2018).
  9. Xia, J., et al. Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid. Langmuir. 27 (3), 1200-1206 (2011).
  10. Mera, A. C., Contreras, D., Escalona, N., Mansilla, H. D. BiOI microspheres for photocatalytic degradation of gallic acid. Journal of Photochemistry and Photobiology A: Chemistry. 318, 71-76 (2016).
  11. Pan, M., Zhang, H., Gao, G., Liu, L., Chen, W. Facet-dependent catalytic activity of nanosheet-assembled bismuth oxyiodide microspheres in degradation of bisphenol A. Environmental Science and Technology. 49 (10), 6240-6248 (2015).
  12. Hu, J., et al. Solvents mediated-synthesis of BiOI photocatalysts with tunable morphologies and their visible-light driven photocatalytic performances in removing of arsenic from water. Journal of Hazardous Materials. 264, 293-302 (2014).
  13. Ye, L., Su, Y., Jin, X., Xie, H., Zhang, C. Recent advances in BiOX (X = Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms. Environmental Science: Nano. 1 (2), 90-112 (2014).
  14. Qin, X., et al. Three dimensional BiOX (X=Cl, Br and I) hierarchical architectures: Facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation. Materials Letters. 100, 285-288 (2013).
  15. Chou, S. Y., et al. A series of BiO x I y/GO photocatalysts: synthesis, characterization, activity, and mechanism. RSC Advances. 6 (86), 82743-82758 (2016).
  16. Shi, X., Chen, X., Chen, X., Zhou, S., Lou, S. Solvothermal synthesis of BiOI hierarchical spheres with homogeneous sizes and their high photocatalytic performance. Materials Letters. 68, 296-299 (2012).
  17. Di, J., et al. Reactable ionic liquid-assisted rapid synthesis of BiOI hollow microspheres at room temperature with enhanced photocatalytic activity. Journal of Materials Chemistry A. 2 (38), 15864-15874 (2014).
  18. Ren, K., et al. Controllable synthesis of hollow/flower-like BiOI microspheres and highly efficient adsorption and photocatalytic activity. CrystEngComm. 14 (13), 4384-4390 (2012).
  19. Lei, Y., et al. Room temperature, template-free synthesis of BiOI hierarchical structures: Visible-light photocatalytic and electrochemical hydrogen storage properties. Dalton Transactions. 39 (13), 3273-3278 (2010).
  20. Montoya-Zamora, J. M., Martínez-de la Cruz, A., López Cuéllar, E. Enhanced photocatalytic activity of BiOI synthesized in presence of EDTA. Journal of the Taiwan Institute of Chemical Engineers. 75, 307-316 (2017).
  21. He, R., Zhang, J., Yu, J., Cao, S. Room-temperature synthesis of BiOI with tailorable (0 0 1) facets and enhanced photocatalytic activity. Journal of Colloid and Interface Science. 478, 201-208 (2016).
  22. Song, J. M., Mao, C. J., Niu, H. L., Shen, Y. H., Zhang, S. Y. Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. CrystEngComm. 12, 3875-3881 (2010).
  23. Mera, A. C., Váldes, H., Jamett, F. J., Meléndrez, M. F. BiOBr microspheres for photocatalytic degradation of an anionic dye. Solid State Science. 65, 15-21 (2017).
  24. Kong, X. Y., Lee, W. C., Ong, W. J., Chai, S. P., Mohamed, A. R. Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. ChemCatChem. 8, 3074-3081 (2016).
check_url/de/59006?article_type=t

Play Video

Diesen Artikel zitieren
Durán-Álvarez, J. C., Martínez, C., Mera, A. C., Del Angel, R., Gutiérrez-Moreno, N. J., Zanella, R. A Facile Synthetic Method to Obtain Bismuth Oxyiodide Microspheres Highly Functional for the Photocatalytic Processes of Water Depuration. J. Vis. Exp. (145), e59006, doi:10.3791/59006 (2019).

View Video