Summary

A Middle Cerebral Artery Occlusion Technique for Inducing Post-stroke Depression in Rats

Published: May 22, 2019
doi:

Summary

Here we present a protocol to induce post-stroke depression in rats by occluding the middle cerebral artery via the internal carotid artery. We use the Porsolt forced swim test and the sucrose preference test to confirm and evaluate induced depressive moods.

Abstract

Post-stroke depression (PSD) is the most recurrent of all psychiatric complications resulting from an ischemic stroke. A greater majority (about 60%) of all ischemic stroke patients suffer from PSD, a disorder considered to be an ischemic stroke-related precursor for increased death and degradation in health. The pathophysiology of PSD is still obscure. To study the mechanism of development and occurrence of PSD further, and to find out a therapy, we attempted to develop a new protocol that requires occluding the middle cerebral artery (MCA) via the internal carotid artery (ICA) in rats. This protocol describes a model of PSD induced in rats through the middle cerebral artery occlusion (MCAO). Also used in the experiment are the Porsolt forced swim test and the sucrose preference test to confirm and evaluate the depressive mood of the rats under investigation. Rather than inserting the catheter through the external carotid artery (ECA), as stipulated for the original procedure, this MCAO technique has the monofilament passing directly through the ICA. This MCAO technique was developed a few years ago and leads to a reduction in mortality and variability. It is generally accepted that the criteria used are preferred in the selection of biological models. The data obtained with this protocol show that this model of MCAO could be a way of inducing PSD in rats and could potentially lead to the understanding of the pathophysiology and the future development of new drugs and other neuroprotective agents.

Introduction

Stroke is fourth on the list of death-perpetrating diseases in the United States1,2,3, while it causes the majority of disabilities in adults in developed countries4; this makes stroke a leading contender among the world's most significant health issues. Normalcy in stroke-surviving patients is rare, with about 15%-40% of survival victims suffering permanent disability, 20% requiring institutional care 3 months after stroke onset5, and about a third of 6-month survivals needing others to help them live through each day6. Stroke reportedly also accounts for the rising national health expenditures7. Estimates from the American Heart Association has stroke-related costs in the United States at over $50 billion in 20108.

Not only does stroke cause individuals' long-term damages, but some survivors tend to suffer emotional and behavioral disorders, such as dementia, fatigue, anxiety, depression, delirium, and aggression9,10,11,12,13,14. The most recurrent psychological sequel after a stroke is post-stroke depression (PSD), diagnosed in about 40%-50% of survivals15,16,17. Stroke-induced depression results in increased morbidity and mortality18,19,20,21,22. The pathophysiology of PSD is not known completely, but it is apparently caused by multiple factors and is linked to disability, cognitive impairment, and lesion site23.

The rat model of focal brain ischemia, created by MCAO, is the most widespread animal model of stroke24,25,26,27. In demonstrating the induction of PSD in rats by occluding the MCA via the ICA, techniques that minimize mortality and variability in the MCAO model are employed28.

The primary objective of this protocol is to outline the steps for inducing PSD in rats by occluding the MCA via the ICA, a modified model of MCAO, which reduces mortality and the outcome of variability28. Specific aims include performing neurological and histological examinations (determining the neurological severity score [NSS], the volume of the infarction zone, and brain edema) to verify the efficacy of MCAO and using behavioral tests to examine the influence of this MCAO procedure on the development of emotional disorders, mainly PSD.

Protocol

The Animal Care Committee of the Ben-Gurion University of the Negev, Israel approved all treatment and testing procedures used in this protocol. 1. Preparation of Rats for the Experimental Procedure NOTE: Select adult male Sprague-Dawley rats weighing 300-350 g. House the rats, four per cage, in a vivarium at 22 °C and 40% humidity, with a reversed 12 h light/dark cycle (lights off at 8:00 a.m.) and unlimited access to food and wate…

Representative Results

Histological findings (Table 1) revealed a statistically significant infarct volume as a percentage of total brain (p < 0.0001) post-MCAO when compared to animals in the sham-control group. Also reported was a statistically significant brain edema when the evaluation from the experimental group (p < 0.0003) was put side by side with that of the sham-control group. The NSS scores obtaine…

Discussion

One of the ways in which the MCAO technique presented here could be deemed safer than the original MCAO model is illustrated by the fact that the ECA and its branches, including the occipital artery, the terminal lingual, and the maxillary artery, are not compromised when occluding the MCA via the ICA. The original MCAO model's offset of the ECA (and its branches), by distally dissecting and coagulating them46, causes impaired mastication, owing to a compromise to the vascular supply to mastic…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

We thank Professor Olena Severynovska of the Department of Physiology, Faculty of Biology, Ecology, and Medicine, Oles Honchar Dnipro University, Dnipro, Ukraine for her support and helpful contributions to our discussions. The data obtained are part of R.K.’s PhD thesis.

Materials

Absorbent pad
Black lusterless perspex box (120 cm × 60 cm × 60 cm), divided into a 25% central zone and the surrounding border zone
Bottles Techniplast ACBT0262SU 150 ml bottles filled with 100 ml of water and 100 ml 1%(w/v) sucrose solution
Electric Shock Heat System Ultasonic Inc.
Horizon-XL Mennen Medical Ltd
Imaging System Kodak For imaging and quantification
Monofilament
Paper towels Pharmacy Dry towels used for keeping rats dry after immersing them in water
Pexiglass cylinder a 100 cm tall and 40 cm in diameter cylinder used for carrying out the forced swim test
Purina Chow Purina 5001 Rodent laboratory chow given to rats, mice and hamster is a life-cycle nutrition that has been used in biomedical researc for over 5 decades. Provided to rats ad libitum in this experiment
Rat Cages Techniplast 2000P Conventional housing for rodents. Was used for housing rats throughout the experiment
Scanner  Canon CanoScan 4200F
Video Camera ETHO-VISION (Noldus) Digital video camera for high definition recording of rat behavior under open field test

Referenzen

  1. Miniño, A. M., Murphy, S. L., Xu, J., Kochanek, K. D. Deaths: final data for 2008. National Vital Statistics Reports. 59 (10), 1-126 (2011).
  2. Roger, V. L., et al. Executive summary: Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation. 125 (1), 188-197 (2012).
  3. Towfighi, A., Saver, J. L. Stroke declines from third to fourth leading cause of death in the United States: Historical perspective and challenges ahead. Stroke. 42 (8), 2351-2355 (2011).
  4. Guo, J. M., Liu, A. J., Su, D. F. Genetics of stroke. Acta Pharmacologica Sinica. 31 (9), 1055-1064 (2010).
  5. Lloyd-Jones, D., et al. Heart disease and stroke statistics – 2010 update: A report from the American Heart Association. Circulation. 121 (7), e46-e215 (2010).
  6. Warlow, C. P. Epidemiology of stroke. Lancet. 352 (Suppl 3), SIII1-SIII4 (1998).
  7. Demaerschalk, B. M., Hwang, H. M., Leung, G. US cost burden of ischemic stroke: A systematic literature review. The American Journal of Managed Care. 16 (7), 525-533 (2010).
  8. Heidenreich, P. A., et al. Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation. 123 (8), 933-944 (2011).
  9. de Groot, M. H., Phillips, S. J., Eskes, G. A. Fatigue associated with stroke and other neurologic conditions: Implications for stroke rehabilitation. Archives of Physical Medicine and Rehabilitation. 84 (11), 1714-1720 (2003).
  10. Kim, J., Choi, S., Kwon, S. U., Seo, Y. S. Inability to control anger or aggression after stroke. Neurology. 58 (7), 1106-1108 (2002).
  11. Leys, D., Hénon, H., Mackowiak-Cordollani, M. S., Pasquier, F. Poststroke dementia. Lancet Neurology. 4 (11), 752-759 (2005).
  12. McManus, J., Pathansali, R., Stewart, R., Macdonald, A., Jackson, S. Delirium post-stroke. Age and Ageing. 36 (6), 613-618 (2007).
  13. Robinson, R. G. Poststroke depression: Prevalence, diagnosis, treatment, and disease progression. Biological Psychiatry. 54 (3), 376-387 (2003).
  14. Tang, W., et al. Emotional incontinence and executive function in ischemic stroke: A case-controlled study. Journal of the International Neuropsychological Society. 15 (1), 62-68 (2010).
  15. Astrom, M., Adolfsson, R., Asplund, K. Major depression in stroke patients: A 3-year longitudinal study. Stroke. 24 (7), 976-982 (1993).
  16. Eastwood, M. R., Rifat, S. L., Nobbs, H., Ruderman, J. Mood disorder following cerebrovascular accident. The British Journal of Psychiatry. 154, 195-200 (1989).
  17. Robinson, R. G., Bolduc, P. L., Price, T. R. Two-year longitudinal study of poststroke mood disorders: Diagnosis and outcome at one and two years. Stroke. 18 (5), 837-843 (1987).
  18. Kauhanen, M., et al. Poststroke depression correlates with cognitive impairment and neurological deficits. Stroke. 30 (9), 1875-1880 (1999).
  19. Morris, P. L., Robinson, R. G., Andrzejewski, P., Samuels, J., Price, T. R. Association of depression with 10-year poststroke mortality. The American Journal of Psychiatry. 150 (1), 124-129 (1993).
  20. Paolucci, S., et al. Post-stroke depression, antidepressant treatment and rehabilitation results. A case-control study. Cerebrovascular Diseases. 12 (3), 264-271 (2001).
  21. Schwartz, J. A., et al. Depression in stroke rehabilitation. Biological Psychiatry. 33 (10), 694-699 (1993).
  22. Williams, L. S., Ghose, S. S., Swindle, R. W. Depression and other mental health diagnoses increase mortality risk after ischemic stroke. The American Journal of Psychiatry. 161 (6), 1090-1095 (2004).
  23. Whyte, E., Mulsant, B. Post-stroke depression: Epidemiology, pathophysiology, and biological treatment. Biological Psychiatry. 52, 253-264 (2002).
  24. Belayev, L., Alonso, O. F., Busto, R., Zhao, W., Ginsberg, M. D. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke. 27 (9), 1616-1623 (1996).
  25. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  26. Spratt, N. J., et al. Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. Journal of Neuroscience Methods. 155 (2), 285-290 (2006).
  27. Yu, F., Sugawara, T., Chan, P. H. Treatment with dihydroethidium reduces infarct size after transient focal cerebral ischemia in mice. Brain Research. 978 (1-2), 223-227 (2003).
  28. Boyko, M., et al. An experimental model of focal ischemia using an internal carotid artery approach. Journal of Neuroscience Methods. 193 (2), 246-253 (2010).
  29. McGarry, B. L., Jokivarsi, K. T., Knight, M. J., Grohn, O. H. J., Kauppinen, R. A. A Magnetic Resonance Imaging Protocol for Stroke Onset Time Estimation in Permanent Cerebral Ischemia. Journal of Visualized Experiments. (127), e55277 (2017).
  30. Uluç, K., Miranpuri, A., Kujoth, G. C., Aktüre, E., Başkaya, M. K. Focal Cerebral Ischemia Model by Endovascular Suture Occlusion of the Middle Cerebral Artery in the Rat. Journal of Visualized Experiments. (48), e1978 (2011).
  31. Boyko, M., et al. Morphological and neurobehavioral parallels in the rat model of stroke. Behavioural Brain Research. 223 (1), 17-23 (2011).
  32. Menzies, S. A., Hoff, J. T., Betz, A. L. Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery. 31 (1), 100-107 (1992).
  33. Boyko, M., et al. Cell-free DNA – A marker to predict ischemic brain damage in a rat stroke experimental model. Journal of Neurosurgical Anesthesiology. 23 (2), 222-228 (2011).
  34. Zheng, Y., et al. Experimental Models to Study the Neuroprotection of Acidic Postconditioning Against Cerebral Ischemia. Journal of Visualized Experiments. 125 (125), e55931 (2017).
  35. Poinsatte, K., et al. Quantification of neurovascular protection following repetitive hypoxic preconditioning and transient middle cerebral artery occlusion in mice. Journal of Visualized Experiments. (99), e52675 (2015).
  36. . ImageJ Available from: https://imagej.nih.gov/ij/ (2018)
  37. Liu, S., Zhen, G., Meloni, B. P., Campbell, K., Winn, H. R. Rodent stroke model guidelines for preclinical stroke trials. Journal of Experimental Stroke & Translational Medicine. 2 (2), 227 (2009).
  38. Boyko, M., et al. Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. European Journal of Neuroscience. 34 (9), 1432-1441 (2011).
  39. Kaplan, B., et al. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke. 22 (8), 1032-1039 (1991).
  40. Zeldetz, V., et al. A New Method for Inducing a Depression-Like Behavior in Rats. Journal of Visualized Experiments. (132), e57137 (2018).
  41. American Psychiatric Association. . Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. , (2000).
  42. Boyko, M., et al. Establishment of an animal model of depression contagion. Behavioural Brain Research. 281, 358-363 (2015).
  43. Porsolt, R. D., Anton, G., Blavet, N., Jalfre, M. Behavioral despair in rats: a new model sensitive to antidepressant treatments. European Journal of Pharmacology. 47 (4), 379-391 (1978).
  44. Boyko, M., et al. The neuro-behavioral profile in rats after subarachnoid hemorrhage. Brain Research. 1491, 109-116 (2013).
  45. Ifergane, G., et al. Biological and Behavioral Patterns of Post-Stroke Depression in Rats. Canadian Journal of Neurological Sciences. 45 (4), 451-461 (2018).
  46. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  47. Dittmar, M., Spruss, T., Schuierer, G., Horn, M. External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke. 34 (9), 2252-2257 (2003).
  48. Ryan, C. L., et al. An improved post-operative care protocol allows detection of long-term functional deficits following MCAo surgery in rats. Journal of Neuroscience Methods. 154 (1-2), 30-37 (2006).
  49. Aspey, B. S., Cohen, S., Patel, Y., Terruli, M., Harrison, M. J. Middle cerebral artery occlusion in the rat: consistent protocol for a model of stroke. Neuropathology and Applied Neurobiology. 24 (6), 487-497 (1998).
  50. Spratt, N. J., et al. Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. Journal of Neuroscience Methods. 155 (2), 285-290 (2006).
  51. Cryan, J. F., Markou, A., Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends in Pharmacological Sciences. 23 (5), 238-245 (2002).
  52. Nestler, E. J., et al. Preclinical models: status of basic research in depression. Biological Psychiatry. 52 (6), 503-528 (2002).

Play Video

Diesen Artikel zitieren
Kuts, R., Melamed, I., Shiyntum, H. N., Frank, D., Grinshpun, J., Zlotnik, A., Brotfain, E., Dubilet, M., Natanel, D., Boyko, M. A Middle Cerebral Artery Occlusion Technique for Inducing Post-stroke Depression in Rats. J. Vis. Exp. (147), e58875, doi:10.3791/58875 (2019).

View Video