Mechanosensitive 이온 채널은 종종 패치 클램프 기록 유체 흐름/전단 힘 감도 측면에서 공부 했다. 그러나, 실험 프로토콜에 따라 이온 채널의 유체 흐름 규정에 결과 잘못 된 수 있습니다. 여기, 우리는 방지 하 고 이론적 근거와 이러한 오류에 대 한 메서드를 제공 합니다.
유체 흐름은 유체 흐름을 이용한 혈관 확장 등 많은 생리와 병리학 과정을 제어 하는 중요 한 환경 자극. 유체 흐름/전단 힘에 생물학 응답에 대 한 분자 기계 장치는 완전히 이해 되지 않습니다, 하지만 이온 채널 게이팅의 유체 흐름 중재 규정은 비판적으로 기여할 수 있습니다. 따라서, 이온 채널의 유체 흐름/전단 힘 감도 패치 클램프 기술을 사용 하 여 공부 되었습니다 했다. 그러나, 실험 프로토콜에 따라 결과 및 해석 데이터의 수 잘못 된. 우리가 유체 흐름 관련 오류에 대 한 실험 및 이론적인 증거를 제시 하는 여기, 예측, 예방, 및 이러한 오류를 수정에 대 한 메서드를 제공 하 고. Ag/AgCl 기준 전극과 입욕 액체 사이 잠재적인 연결에 변화 3 M KCl. 유체 흐름 수 가득한 오픈 피 펫으로 측정 되었다 다음 액체/금속 접합 약 7 잠재적인 뮤직 비디오를 이동 합니다. 반대로, 유체 흐름에 의해 유도 된 전압 변화를 측정 하 여 우리 unstirred 경계 층의 이온 농도 추정. 정적 상태에서 실제 이온 농도 Ag/AgCl 기준 전극 또는 이온 채널 인렛에 세포 막 표면에 인접 한 낮은 흐름 상태에서의 30%로 약으로 도달할 수 있습니다. 배치는 agarose 3 M KCl 다리 입욕 및 참조 전극 사이 접합 잠재적인 이동의이 문제를 방지 할 수 있습니다. 그러나, unstirred 레이어 효과 세포 막 표면에 인접 한이 방법으로 해결할 수 없습니다. 여기, 우리는 이온 전류의 유체 흐름 유도 규칙을 공부 하는 동안 agarose 소금 브리지를 사용 하 여의 중요성을 강조 오픈 패치 클램프 피 펫과 unstirred 경계 층에 진짜 이온 농도 측정 하기 위한 방법을 제공 합니다. 따라서, unstirred 경계 층에 이온의 실제 농도 고려이 새로운 접근 방식을 실험 설계 및 이온 채널의 유체 전단 응력 규제 관련 데이터 해석에 유용한 통찰력을 제공할 수 있습니다. .
유체 흐름은 유체 흐름을 이용한 혈관 확장 및 유체 전단 힘 종속 혈관 개장 및 개발1,2,등 많은 생리와 병 적인 프로세스를 제어 하는 중요 한 환경 큐 3,,45. 유체 흐름 전단 힘에 생물학 응답에 대 한 분자 기계 장치는 완전히 이해 되지 않습니다, 하지만 이온 채널 게이팅의 유체 흐름 중재 규칙 유체 흐름 유도 응답5 비판적으로 기여할 수 있다고 믿고 , 6 , 7 , 8. 내 피 안쪽 정류기 Kir2.1 및 캘리포니아2 +의 예를 들어 활성화-활성화 된 K+ (KCa2.3, KCNN3) 채널 Ca2 + 유입 유체 흐름에 의해 액체에 기여할 제안 되었습니다 후 흐름 유도 혈관6,,78. 따라서, 많은 이온 채널, 특히 기계적으로 활성화 또는-저해 채널, 패치 클램프 기술6,,910 유체 흐름/전단 힘 감도 측면에서 연구 , 그러나 11., 수에 따라 실험 프로토콜 패치 클램프 기록 동안 수행, 결과 및 유체 흐름-이온 채널의 규정에 있는 데이터의 해석 잘못10,11.
유체 흐름 유도 아티팩트 패치 클램프 기록에의 한 소스는 목욕 및 Ag/AgCl 기준 전극11사이 잠재적인 교차점에서 이다. 그것은 일반적으로 믿고 그 입욕 액체와 Ag/AgCl 전극 사이 잠재적인 액체/금속 접합 일정 입욕 액체의 Cl– 농도 일정 유지는 입욕 솔루션 사이의 화학 반응 고려 그리고 되도록 Ag/AgCl 전극:
Ag + Cl–↔ AgCl + 전자 (e–) (공식 1)
그러나, 입욕 솔루션 및 Ag/AgCl 기준 전극 (공식 1) 사이 전반적인 전기 화학 반응 왼쪽에서 오른쪽으로 진행 하는 경우, Ag/AgCl에 인접 한 입욕 액체의 Cl– 농도 참조 충분 한 convectional 전송 보장 하지 않는 한 전극 (unstirred 경계 층12,13,,1415) 솔루션, 목욕의 대부분에서 그 보다 훨씬 낮은 수 있습니다. 이전 또는 비 이상적 Ag/AgCl 전극 Ag의 부적당 한 염소와 함께 사용 하 여 이러한 위험을 증가할 수 있습니다. 이 유체 흐름 관련 아티팩트 참조 전극, 사실,에서 단순히 입욕 액체 및 참조 사이 기존의 agarose 소금 다리를 배치 하 여 제외할 수 있습니다 전극, 유물 진짜 Cl– 에서 변경에 기반 Ag/AgCl 전극11에 인접 한 농도. 이 연구에서 제시 하는 프로토콜 흐름 관련 접합 잠재적인 변화를 방지 하 고 unstirred 경계 층에 진짜 이온 농도 측정 하는 방법을 설명 합니다.
Agarose KCl 입욕 액체 및 Ag/AgCl 기준 전극 사이 다리를 놓은 후 고려해 야 하는 또 다른 중요 한 요소 이다: 참조로 그냥 Ag/AgCl 전극 역할 Cl– 전극, 이온 채널 또한 기능을 할 수 같은 이온 선택적인 전극. 입욕 액체와 Ag/AgCl 기준 전극 사이 unstirred 경계 층의 상황 막 이온 채널을 통해 세포 외 및 세포내 솔루션 사이 이온의 운동을 하는 동안 발생합니다. 이 유체 흐름에 의해 채널 이온의 규정을 해석 하는 때 주의 사용 해야 함을 의미 합니다. 우리의 이전 연구11에서 설명 했 듯이, 전기 화학 기온 변화도 존재 하는 솔루션을 통해 이온의 운동 3 가지 메커니즘을 통해 발생할 수 있습니다: 확산, 마이그레이션, 및 대류, 어디 확산 운동 이다 농도 기온 변화도 의해 유도 된 마이그레이션 전기 기온 변화도 의해 구동 하는 운동 이며 대류 유체 흐름을 통해 운동 이다. 이러한 세 가지 전송 메커니즘 가운데 대류 모드 대부분 이온11 (> 1000 번 유포 또는 일반적인 패치 클램프 설정 마이그레이션 보다)의 운동에 공헌 한다. 이 왜 입욕 액체와 Ag/AgCl 기준 전극 사이 잠재적인 연결 수 매우 다른 정적 및 유체 흐름 조건11의 이론적인 기초를 형성 합니다.
위에서 제안 된 가설에 의하여 현재 이온 채널에 유체 흐름의 어떤 facilitatory 효과 진짜 이온 농도 막 표면 (unstirred 경계 층)에 채널 입구에 인접 한의 대류 복원에서 유추 될 수 10.이 경우에, 이온 채널 전류에 대 한 유체 흐름 유도 효과 단순히 발현 이온 채널 게이팅의 규제 안에서 전기 이벤트에서. 비슷한 생각 이전 배리와 동료12,13,,1415 엄격한 이론적인 고려 사항 및 실험적 증거, 일컬어 unstirred 층에 따라 의해 제안 되었다 또는 전송 번호 효과입니다. 단일 채널 전도도 충분 한 전송 채널 (unstirred 멤브레인 표면에 보다 막에서 빠른 전송 속도), 속도 경계층 효과 제공 하기 위해 충분히 오픈 시간 발생할 수 있습니다 일부 이온 채널 충분 한 경우 . 따라서, 대류 종속 전송 최종 유체 흐름 유도 자와 이온 현재10,12,13,,1415에 기여할 수 있다.
우리는 한 천 또는 agarose를 사용 하 여의 중요성을 강조 하는이 연구에서 이온의 유체 흐름 유도 규칙을 공부 하는 동안 소금 브리지. 우리는 또한 Ag/AgCl 기준 전극 및 막 이온 채널에 인접 한 unstirred 경계 층에 진짜 이온 농도 측정 하기 위한 방법을 제공 합니다. 또한, 이온 채널 전류 (즉, 대류 가설 또는 unstirred 층 전송 번호 효과)의 유체 흐름을 이용한 변조의 이론적 해석 설계 하 고 해석 하는 연구에 귀중 한 통찰력을 제공할 수 있습니다. 전단 힘-규칙 이온 채널의. 우리 경우 이온 채널 전류 막 이온 채널의 모든 종류를 통해 유체 흐름, 유체 흐름 전단 힘만을 그들의 생물 학적 감도의 독립에 의해 촉진 될 수 있다 예측 unstirred 경계 층 전송 번호 효과 따라 이온 채널 충분 한 단일 채널 전도도 긴 오픈-시간이 있다. 높은 이온 채널 전류 밀도 세포 막 표면에 unstirred 경계층 효과 높일 수 있습니다.
이 연구에서 우리는 오픈 패치 클램프 피 펫이 높은 KCl로 가득와 잠재적인 액체 금속 접합을 결정 하 여 Ag/AgCl 기준 전극에 인접 한 unstirred 층에 진짜 Cl– 농도 측정 하는 방법을 시연 농도입니다. 경계 층에 Cl– 농도 변화 접합 잠재력의 변화 유체 흐름 조건에 정적에서 전환할 때 발생할 수 있습니다. 단순히 참조 전극과 입욕 액체 사이 KCl 다리는 agarose를 사용 하 여 패치 클램프 기?…
The authors have nothing to disclose.
이 연구 프로그램에 의해 기본 과학 연구 (2015R1C1A1A02036887 및 2016R1A2B4014795 NRF) 연구 재단의 국립 과학, 정보 통신의 내각에 의해 투자를 통해 파이 오 니 아 연구 센터 프로그램 (2011-0027921)에 의해 지원 되었다 & 미래 계획, 보건 복지, 한국 공화국 (HI15C1540)에 의해 한국 건강 기술 R & D 프로젝트 통해는 한국 보건 산업 개발 연구소 (진흥원)의 교부 금에 의해 투자 하 고.
RC-11 open bath chamber | Warner instruments, USA | W4 64-0307 | |
Ag/AgCl electrode pellet | World Precision Instruments, USA | EP1 | |
Agarose | Sigma-aldrich, USA | A9793 | |
Voltage-clamp amplifier | HEKA, Germany | EPC8 | |
Voltage-clamp amplifier | Molecular Devices, USA | Axopatch 200B | |
Liquid pump | KNF Flodos, Switzerland | FEM08 |