Aqui, apresentamos um protocolo para preparar os cromóforos de transferência de carga com base em uma membrana composta de germânio/polímero.
Este trabalho apresenta um método para preparar os cromóforos de transferência de carga usando polyoxotungstate (PW12O403 –), íons de metais de transição (Ce3 + ou Co2 +) e polímeros orgânicos, com o objectivo de foto-ativação oxigênio-evoluindo manganês óxido catalisadores, que são componentes importantes na fotossíntese artificial. A técnica do cross-linking aplicou-se para obter uma membrana autónoma com um PW12O403 – índice elevado. Incorporação e retenção de estrutura de PW12O403 – dentro da matriz do polímero foram confirmados por FT-IR e espectroscopia micro-Raman, e características ópticas foram investigadas por espectroscopia UV-Vis, que revelou construção bem sucedida da unidade de transferência (MMCT) carga de metal-metal. Após a deposição de MnOx oxigênio evoluindo catalisadores, medições de fotocorrente sob irradiação de luz visível verificado a transferência de carga sequencial, Mn → MMCT unidade → eletrodo e a intensidade de fotocorrente foi consistente com o redox potencial do metal doador (Ce ou Co). Este método fornece uma nova estratégia para a preparação de sistemas integrados envolvendo catalisadores e absorção de fótons peças para uso com materiais foto-funcionais.
O desenvolvimento de sistemas de conversão de energia solar usando fotossíntese artificial ou células solares é necessário para permitir a oferta de fontes alternativas de energia que pode amenizar o clima global e energia emite1,2, 3,4. Materiais funcionais-foto podem ser amplamente classificados em dois grupos, sistemas baseados em semicondutores e sistemas baseados na molécula orgânicos. Embora muitos diferentes tipos de sistemas têm sido desenvolvidos, melhorias ainda precisam ser feitas porque sistemas semicondutores sofrem com a falta de controle de transferência de carga precisos, e sistemas de molécula orgânica não são adequadamente duráveis com respeito à foto-irradiação. No entanto, a utilização de moléculas inorgânicas como componentes de unidade de transferência de carga pode melhorar esses problemas respectivos. Por exemplo, Frei et al desenvolveu oxo-ponte metálicos sistemas enxertados na superfície da sílica de mesoporos que podem induzir a transferência de carga de metal-metal (MMCT) por foto-irradiação e desencadear reações de fotoquímica redox5, 6 , 7 , 8 , 9.
Nosso grupo estendido o sistema atômico único para um sistema de polinucleares utilizando germânio (POM), como o elétron aceitador10,11,12, com a expectativa de que o uso do sistema de polinucleares seria vantajoso na indução e controle da reação de transferência de elétrons multi, que é um conceito importante na conversão de energia. O protocolo descrito aqui, apresentamos o método detalhado usado para preparar o sistema baseado em POM MMCT, que funciona em uma matriz de polímero, como relatado recentemente13. A configuração de tipo de membrana é favorável para a separação do produto entre os produtos de reação anódica e catódica. Foi aplicado o método do cross-linking, que permitiu a formação de uma membrana independente, mesmo com alto conteúdo POM. Medições de Photoelectrochemical provaram que a seleção apropriada do metal doador é chave para desencadear o alvo. O sistema de metal POM/doador funciona como um foto-sensibilizador para ativar catalisadores de transferência de elétrons multi sob irradiação de luz visível. Embora este trabalho utiliza MnOx como um catalisador de transferência de elétrons multi para a reação de oxidação da água, este sistema foto-funcional também é aplicável para uso com outros tipos de reações, utilizando vários POMs, metais de doador e catalisadores.
É fundamental para aplicar o método do cross-linking, introduzido por Helen et al . 14 a desenvolver uma membrana independente. Quando o acetato de polivinilo foi aplicado como o polímero base, neste estudo, agregação de H3PW12O40 ocorreu, que impediram a formação da membrana independente. No entanto, quando a fabricação da membrana foi tentada utilizando Nafion como polímero base, não havia nenhuma progressão da reação com Ce3 + e…
The authors have nothing to disclose.
R. Y. recebeu apoio financeiro do centro de excelência Global para o programa de inovação de sistemas mecânicos da Universidade de Tóquio e da Universidade de Tóquio concessão para pesquisa de doutorado. Este trabalho é parcialmente suportado pelo subsídio de KAKENHI JSPS para jovens cientistas (B) (17K 17718).
Poly(vinyl Alcohol) 1000, Completely Hydrolyzed | Wako | 162-16325 | |
Polyacrylamide, Mv 6,000,000 | Polyaciences, Inc. | 2806 | May contain carcinogenic monomer, acrylamide. |
12 Tungsto(VI)phosphoric Acid n-Hydrate | Wako | 164-02431 | Highly acidic |
Acetone 99.5 + %(GC) | Wako | 012-00343 | |
25% Glutaraldehyde Solution | Wako | 079-00533 | |
Hydrochloric Acid 35-37% | Wako | 080-01066 | |
Cerium(III) Nitrate Hexahydrate 98 + %(Ti) | Wako | 031-09732 | |
Cobalt(II) Chloride Hexahydrate 99 + %(Ti) | Wako | 036-03682 | |
Pottasium Permanganate 99.3 + %(Ti) | Wako | 167-04182 | Highly oxydative |
Sodium Thiosulfate Pentahydrate 99 + %(Ti) | Wako | 197-03585 | |
Automatic spray gun | Lumina | ST-6 |