En este protocolo, se describe un método de la micropipeta para aplicar directamente una fuerza controlada al núcleo en una célula viva. Este ensayo permite interrogatorio de nucleares propiedades mecánicas en la célula viva, adherente.
Las propiedades mecánicas del núcleo determinan su respuesta a fuerzas mecánicas generadas en las células. Porque el núcleo es molecularmente continuo con el citoesqueleto, se necesitan métodos para sondear su comportamiento mecánico en las células adherentes. Aquí, discutimos la sonda fuerza directa (DFP) como una herramienta para aplicar la fuerza directamente al núcleo en una célula adherente de viva. Atribuimos una micropipeta estrecha a la superficie nuclear con la succión. La micropipeta es traducida fuera del núcleo, que hace que el núcleo se deforman y traducir. Cuando la fuerza restauradora es igual a la fuerza de succión, el núcleo se separa y elásticamente se relaja. Porque precisamente se conoce la presión de succión, se conoce la fuerza en la superficie nuclear. Este método ha revelado que las fuerzas de la nano-escala son suficientes para deformar y traducir el núcleo de las células adherentes e identificaron elementos citoesqueléticos que permiten el núcleo resistir las fuerzas. El DFP puede utilizarse para analizar las contribuciones de los componentes celulares y nucleares para propiedades mecánicas nucleares en las células vivas.
Patologías como el cáncer implican alteraciones nuclear forma y estructura1,2, que generalmente están acompañados por una descalcificación de los núcleo3,4. Nuclear resistencia a la deformación mecánica se ha caracterizado generalmente por aplicación de una fuerza en núcleos aislados5.
El núcleo en las células está conectado molecularmente con el citoesqueleto por el vinculador del nucleoesqueleto y citoesqueleto (LINC) complejo6,7,8,9. Como resultado, el núcleo está integrado mecánicamente con el citoesqueleto y, a través de adherencias de sustrato celular, la matriz extracelular. Mecánicamente el núcleo interior de las células adherentes de sondeo puede proporcionar la penetración en esta integración mecánica. Los métodos para manipular los núcleos en las células vivas incluyen micropipeta aspiración10,11y microscopía de fuerza atómica12,13,14. Recientemente hemos descrito un sondeo de la fuerza directa (DFP) que aplica fuerzas mecánicas directamente sobre el núcleo de una vida celular adherente15.
Aquí describiremos el procedimiento para utilizar un sistema de microinyección que está comúnmente disponible en las instalaciones de microscopía para aplicar una fuerza mecánica de nano-escala conocida, directamente al núcleo en una célula adherente. Un femtotip (punta de micropipeta del diámetro del μm 0,5) es montado y conectado al sistema de microinyección por un tubo. La punta, colocada en un ángulo de 45° con respecto a la superficie de la placa de cultivo, se baja hasta adyacente a la superficie nuclear. El tubo entonces se desconecta y abierto a la atmósfera, que crea una presión negativa de succión en la superficie nuclear y sella la punta de la micropipeta contra la superficie nuclear. A través de la traducción de la punta de una micropipeta, el núcleo es deforme y eventualmente (dependiendo de la magnitud de fuerza aplicada), separado de la micropipeta. Esta separación se produce cuando las fuerzas de restauración (resistencia), ejercidas por el núcleo y la célula, igualan a la fuerza de la succión aplicada por la micropipeta. Análisis se pueden realizar midiendo el desplazamiento del núcleo, la cepa de longitud (ecuación 1), o la deformación de la zona (figura 1A).
Medición de la integración mecánica del núcleo con el citoesqueleto es un reto para métodos más actuales, como la micropipeta aspiración16, porque requieren cualquiera de los dos núcleos aislados (donde el núcleo es desacoplado de citoesqueleto) o núcleos en células suspendidas (donde están ausentes las fuerzas extracelulares, tales como las fuerzas de tracción,). Fuerza se ha aplicado al núcleo mediante la aplicación de tensión biaxial a adherente de las células a una membrana<su…
The authors have nothing to disclose.
Este trabajo fue financiado por los NIH R01 EB014869.
FluoroDish | WPI | FD35 | |
SYTO 59 | ThermoFisher Scientific | S11341 | |
Femtotips | Eppendorf | 930000043 | |
InjectMan NI2 | Eppendorf | NA | discontinued, current equivalent model: InjectMan 4 |
FemtoJet | Eppendorf | NA | Current model FemtoJet 4i |
Plan Fluor oil immersion 40x | Nikon | NA | |
Apo TIRF oil immersion 60x | Nikon | NA | |
Donor Bovine Serum (DBS) | ThermoFisher Scientific | 16030074 | NIH 3T3 serum |
Dulbecco's Modification of Eagle's (DMEM) | Mediatech cellgro | MT10013CVRF | NIH 3T3 medium |
Penicillin-Streptomycin | Mediatech | MT30004CIRF | NIH 3T3 medium supplement |
Immersion Oil Type LDF Non-Fluorescing | Nikon | 77007 | Immersion oil for objective lens |