Summary

高悬浮泥沙荷载和大型漂浮碎屑水生环境中 Microplastics 的取样、分类和表征

Published: July 28, 2018
doi:

Summary

迄今为止, 大多数 microplastic 研究都发生在海洋系统中, 悬浮固体水平相对较低。重点现在转移到淡水系统, 这可能具有高泥沙负荷和漂浮的碎片。该协议涉及收集和分析含有高悬浮固体负荷的水生环境中的 microplastic 样品。

Abstract

在海洋中普遍存在的塑料碎片被公众、科学界和政府机构广泛认可。然而, 只有最近才在淡水系统, 如河流和湖泊中 microplastics, 被量化。Microplastic 抽样在表面通常包括部署漂移网在一个固定或移动的小船之后, 它限制取样对低水平悬浮的沉淀物和漂浮或被淹没的残骸的环境。以前的研究, 利用漂移网收集 microplastic 碎片通常使用网与≥300µm 网格大小, 允许塑料碎片 (颗粒和纤维) 低于这个大小, 通过网络和逃避量化。此处详述的协议使: 1) 在高悬浮荷载和漂浮或浸没碎片的环境中采集样本, 2) 对 microplastic 颗粒和纤维 < 300 µm 的捕获和定量. 用一种蠕动泵在低密度聚乙烯 (PE) 容器中储存, 然后在实验室进行过滤和分析。过滤是由一个定制的 microplastic 过滤装置, 其中包含了尼龙网状筛和混合纤维素酯膜过滤器可拆卸的联合关节。用显微镜对网筛和膜过滤器进行了定量和分离 microplastic 微粒和纤维的研究。然后用微衰减的全反射傅里叶变换红外光谱仪 (microplastic) 对这些材料进行了检测, 以确定聚合物的类型。采用蓝色 PE 微粒和绿色尼龙纤维对样品进行了峰值检测;测定颗粒物的回收率为 100%, 纤维含量为92%。该议定书将指导类似的研究 microplastics 在高浓度的河流泥沙。通过对蠕动泵和过滤装置的简单修改, 用户可以收集和分析各种样品体积和颗粒尺寸。

Introduction

最早在二十世纪三十年代1, 塑料首次在海洋中被观测到。最近对海洋塑料碎片的估计范围从海洋表面的塑料超过24.3万公吨 (mt) 到 4.8-1270万吨塑料, 每年从陆地来源进入大洋2,3。早期对海洋塑料碎片的研究侧重于 macroplastics (> 5 毫米直径), 因为它们很容易看到和量化。然而, 最近发现, macroplastics 代表 < 10% 的塑料碎片, 计数, 在海洋中, 表明绝大多数的塑料碎片是 microplastic (< 5 毫米直径)2

Microplastics 分为两组: 初级和二级 Microplastics。主要 microplastics 由直径 < 5 毫米制造的塑料组成, 包括塑料球, 用于制造消费品的原料, 微球用作个人护理产品中的 exfoliants (例如,洗脸、身体磨砂、牙膏), 以及在工业中的磨料或润滑剂。次级 microplastics 是在环境中创建的, 因为较大的塑料碎片被光解、磨损和微生物分解4,5碎片。合成纤维也是次要的 microplastics 并且是越来越关心。一个单一的服装可以释放 > 1900 纤维每洗涤在国内洗衣机6。这些纤维, 以及个人护理产品的微珠, 在进入废水处理厂之前, 都被冲进下水道并进入排污系统。墨菲 (2016) 发现, 一个65万人口的污水处理厂将 microplastic 浓度减少了 98.4%, 从进水到出水, 但 6500万 microplastics 在废水和污泥中保持每天7。即使在处理过程中 microplastics 的比例很高, 千百万人, 可能是亿万, microplastics 通过废水处理厂每天和进入地表水在污水6,8 ,9,10,11

由于其环境的释放, microplastics 在所有营养水平12,13,14,15的海洋生物的消化和呼吸组织中发现。它们在吸收后的影响是可变的, 有些研究没有观察到伤害, 而另一些则显示了许多影响, 如物理和化学组织损伤4,6,14,15。由于这些发现, 这一领域的兴趣在过去五年中有所增加。然而, 最近才开始对淡水系统, 如河流和湖泊中的塑料碎片 (特别是 microplastics) 进行量化研究, 或评估对居住在这些生境1216的生物的影响, 17,18。河流是海洋中发现的塑料碎片的主要来源, 因为它们接收到含 microplastics 和 macroplastics 的废水和地表水径流。

此处详述的协议可用于收集不可行的漂移网的 microplastic 样本;具体来说, 在水生环境中, 悬浮沉积物高度集中, 像密西西比河这样的大型漂浮碎屑。密西西比河流域是世界上最大的、拥有 > 9000万人口的国家之一, 这可能使它成为海洋中最大的塑料碎片来源19,20。每年, 密西西比河平均排放735公里3的淡水到墨西哥湾, 以及高浓度的悬浮沉积物 (60 至 > 800 毫克/升) 和大碎片13,21。在密西西比河及其支流的两个深度 (表面和0.6 深度) 收集水样, 使用蠕动泵在半透明的 1 L 低密度聚乙烯 (PE) 容器中。在实验室中, 用尼龙网筛和混合纤维素酯膜过滤器同时过滤样品, 用特制的63.5 毫米 (2.5 英寸) 聚氯乙烯 (PVC) 气缸与联合接头插入筛和过滤器22。在过滤装置中加入 PVC 联合, 可以根据需要尽可能多或少量的粒度类进行过滤。此外, 它还可用于在研究合成纤维时使用膜过滤器捕获 microplastic 碎片到亚微米尺寸。过滤后 , 样品燥 , 怀疑塑料被识别和分类从网筛和膜过滤器下的显微镜。然后用微衰减的全反射傅里叶变换红外光谱 (微型 ATR-FTIR) 研究了怀疑塑料, 以消除非合成材料或确定聚合物类型。考虑到 microplastic 颗粒和纤维的大小, 污染是司空见惯的。污染来源包括大气沉积物、衣物、田间和实验室设备以及去离子 (DI) 水资源。在整个《议定书》中包括多个步骤, 以减少来自不同来源的污染, 同时进行研究的所有阶段。

Protocol

1. 水样采集 收集水样本和水质量数据的利益乘船的河流是良好的混合, 理想的地方, 河流阶段或排放已知 (例如,美国地质调查 (USGS) 测量站)。20要保证水是混合的, 用手持式仪表在河中浸泡, 在电导率保持相对恒定的地方引导小船。 在取样点, 记录位置坐标和深度。要找到0.6 深度, 只需将总深度乘以0.6。使用手持式仪表测量感兴趣的水质参数 (如浊度、?…

Representative Results

为了验证此协议的恢复率, 三个样本 (v1-v3) 从 Oso 湾, 科珀斯克里斯蒂, 得克萨斯州 (毗邻得克萨斯州 A & M 大学科珀斯克里斯蒂校区), 与10蓝色 PE 微粒 (范围从50-100 µm直径) 和50种不同长度的绿色尼龙纤维 (图 3)。计算了样本的 TSS (2 节), 然后用3-5 节中概述的方法对样品进行过滤。蓝色 PE 微粒和绿色尼龙纤维然后被分离和定量 (表 1…

Discussion

Microplastic 收集使用漂移网是传统的方法, 在海洋环境, 如泥沙和塑料浓度低, 因此需要大量的样本量。然而, 在高泥沙荷载和大型漂浮或淹没的河流中, 漂移网并不总是切实可行或安全的。此外, 在试图彻底捕获和量化 microplastic 材料 (尤其是纤维) 时, 使用漂移网是不可行的, 因为大多数用于塑料测量的网都有网格尺寸≥300µm。本文所描述的协议允许在含有高泥沙负荷的水体中进行取样, 同时允许捕获…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

该议定书建立的项目由国家海洋和大气管理局 (NOAA) 海洋碎片计划 (NA16NO29990029) 提供经费。我们感谢伊利诺伊州奥尔顿国家大河研究和教育中心 (NGRREC) 的迈尔斯. 科克伦, 以帮助选址和船上操作。现场和实验室的工作是在卡米尔. 巴克利, 迈克尔. Abegg, 和丽贝卡. 瓦格纳的帮助下完成的。

Materials

1L Cubitainer Containers, Low-Density Polyethylene VWR 89094-140 Containers used to collect and store samples.
2-1/2" Clear Schedule 40 Rigid PVC Pipe United States Plastic Corporation 34138 The PVC pipe used to make the device comes as an 2.43 m pipe. The pipe was then cut to the desired lengths for each section seperated by union joints. Section lengths were decided by predicting smaller pore sizes would clogg the device quicker. Longer sections were placed above the smaller pore sizes to collect and hold water to prevent needing to disassemble the device to change a filter while a sample remained in the device. For one filtration device one 18 in, one 12 in, and two 6 in peices are needed.
2-1/2" PVC SCH 40 Socket Union  Supply House 457-025 Union joints were glued to PVC pipe to house nylon sieves and mixed cellulose membranes.
Nylon 6 Woven Mesh Sheet, Opaque Off-White, 12" Width, 12" Length, 500 microns Mesh Size, 38% Open Area (Pack of 5) Small Parts via Amazon CMN-0500-C/5PK-05 Mesh sheets were cut into circles to match the diameter of the outer diameter of the PVC pipe. The edges were glued to esure no fraying would occur. The glue 's diamter should not extend into the inner diameter of the PVC so that it will not be affected during filtration. 
Nylon 6 Woven Mesh Sheet, Opaque White, 12" Width, 12" Length, 100 microns Mesh Size, 44% Open Area (Pack of 5) Small Parts via Amazon B0043D1TB4 Mesh sheets were cut into circles to match the diameter of the outer diameter of the PVC pipe. The edges were glued to esure no fraying would occur. The glue 's diamter should not extend into the inner diameter of the PVC so that it will not be affected during filtration. 
Nylon 6 Woven Mesh Sheet, Opaque White, 12" Width, 12" Length, 50 microns Mesh Size, 37% Open Area (Pack of 5) Small Parts via Amazon B0043D1SGA Mesh sheets were cut into circles to match the diameter of the outer diameter of the PVC pipe. The edges were glued to esure no fraying would occur. The glue 's diamter should not extend into the inner diameter of the PVC so that it will not be affected during filtration. 
Mixed Cellulose Ester Membrane, 0.45um, 142mm, 25/pk VWR 10034-914 Mixed cellulose membrane filter with 0.45 um was used as the last filter. A large diameter was used to allow the filter to be folded into a cone to increase surface area of the filter to prevent clogging. 
Metal Mesh Basket Tea Leaves Strainer Teapot Filter 76mm Dia 3pcs Uxcell via Amazon a15071600ux0260 The mesh basket used to provide extra support for the membrane filter to prevent tearing when pressure was applied by a vacuum pump.
1/2" PVC Barbed Insert Male Adapter Supply House 1436-005 A vacuum adapter was added to allow vacuum filtration in the case of slow filtration due to high sediment concentration.
1/2 in. O.D. x 3/8 in. I.D. x 10 ft. PVC Clear Vinyl Tube Home Depot 702229 Tubing used to connect the vacuum pump to the filtration device.
YSI Professional Plus Multiparameter Instrument with Quatro Cable YSI 6050000 Handheld meter used to measure additional water quality parameters parameters (e.g., turbidity, temperature, conductivity, pH, and dissolved oxygen (DO)).
2100P Portable Turbidimeter Hach 4650000 Handheld meter used to measure turbidity.
FEP-lined PE tubing Geotech 87050529 Tubing used with perestaltic pump to collect water samples from desired depths.
Geopump Peristaltic Pump Series II Geotech 91350123 Pump used to collected water samples.
MeiJi Techno EMZ-8TR Microscope Microscope.com EMZ8TR-PLS2 Microscope used analyze mesh sieves and membrane filters to quanitfy suspect microsplastics.
Nicolet iS10 FTIR Spectrometer Thermo Electron North America 912A0607 FTIR used to analyze suspect microplastics.
Nicolet iN5 FTIR microscope Thermo Electron North America 912A0895 FTIR microscope used to analyze suspect microplastics.
Germanium (Ge) ATR Thermo Electron North America 869-174400 Geranium ATR accessory used along with the Nicolet iN5 FTIR microscope to analyze suspect microplastic.
Aluminum EZ-Spot Micro Mounts (Pkg of 5) Thermo Electron North America 0042-545 Microscope slides used along with the Nicolet iN5 FTIR microscope to analyze suspect microplastic.
Aluminum Coated Glass Sample Slides Thermo Electron North America 0042-544 Microscope slides used along with the Nicolet iN5 FTIR microscope to analyze suspect microplastic.

Referenzen

  1. Fowler, C. W. Marine debris and northern fur seals: A case study. Marine Pollution Bulletin. 18, 326-335 (2015).
  2. Eriksen, M., et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One. 9 (12), e111913 (2014).
  3. Jambeck, J. R., et al. Marine pollution. Plastic waste inputs from land into the ocean. Science. 347 (6223), 768-771 (2015).
  4. Andrady, A. L. Microplastics in the marine environment. Marine Pollution Bulletin. 62 (8), 1596-1605 (2011).
  5. Cole, M., Lindeque, P., Halsband, C., Galloway, T. S. Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin. 62 (12), 2588-2597 (2011).
  6. Browne, M. A., et al. Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environmental Science & Technology. 45 (21), 9175-9179 (2011).
  7. Murphy, F., Ewins, C., Carbonnier, F., Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology. 50 (11), 5800-5808 (2016).
  8. Zubris, K. A., Richards, B. K. Synthetic fibers as an indicator of land application of sludge. Environmental Pollution. 138 (2), 201-211 (2005).
  9. Fendall, L. S., Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin. 58 (8), 1225-1228 (2009).
  10. Gregory, M. R. Plastic ‘scrubbers’ in hand cleansers: A further (and minor) source for marine pollution identified. Marine Pollution Bulletin. 32 (12), 867-871 (1996).
  11. Bayo, J., Olmos, S., López-Castellanos, J., Alcolea, A. Microplastics and microfibers in the sludge of a municipal wastewater treatment plant. International Journal of Sustainable Development and Planning. 11, 812-821 (2016).
  12. McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., Kelly, J. J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental Science & Technology. 48 (20), 11863-11871 (2014).
  13. Farrell, P., Nelson, K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution. 177, 1-3 (2013).
  14. Rochman, C. M., et al. Scientific evidence supports a ban on microbeads. Environmental Science & Technology. 49 (18), 10759-10761 (2015).
  15. Taylor, M. L., Gwinnett, C., Robinson, L. F., Woodall, L. C. Plastic microfibre ingestion by deep-sea organisms. Scientific Reports. 6, 33997 (2016).
  16. Mani, T., Hauk, A., Walter, U., Burkhardt-Holm, P. Microplastics profile along the Rhine River. Scientific Reports. 5, 17988 (2015).
  17. Morritt, D., Stefanoudis, P. V., Pearce, D., Crimmen, O. A., Clark, P. F. Plastic in the Thames: a river runs through it. Marine Pollution Bulletin. 78 (1-2), 196-200 (2014).
  18. . National Park Servies Available from: https://www.nps.gov/miss/riverfacts.htm (2017)
  19. . United States Census Bureau Available from: https://www.census.gov/geo/maps-data/data/tiger-data.html (2010)
  20. . United States Geological Survey (USGS) Available from: https://waterdata.usgs.gov/nwis/rt (2016)
  21. Grimes, C. B. Fishery Production and the Mississippi River. Fisheries. 28 (8), 17-26 (2001).
  22. Talvitie, J., et al. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology. 72 (9), 1495-1504 (2015).
  23. . . United States Environmental Protection Agency (USEPA) Method 160.2: Residue, Non-filtereable (Gravimetric, Dried at 103-105C). , (1971).
  24. Nor, N. H., Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Marine Pollution Bulletin. 79 (1-2), 278-283 (2014).
  25. Woodall, L. C., Gwinnett, C., Packer, M., Thompson, R. C., Robinson, L. F., Paterson, G. L. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Marine Pollution Bulletin. 95 (1), 40-46 (2015).
  26. . . S. 1424 – 114th Congress: Microbead-Free Waters Act of 2015. , (2015).
check_url/de/57969?article_type=t

Play Video

Diesen Artikel zitieren
Martin, K. M., Hasenmueller, E. A., White, J. R., Chambers, L. G., Conkle, J. L. Sampling, Sorting, and Characterizing Microplastics in Aquatic Environments with High Suspended Sediment Loads and Large Floating Debris. J. Vis. Exp. (137), e57969, doi:10.3791/57969 (2018).

View Video