Este protocolo descreve um rim completo check-up que deve ser realizado em modelos do rato da doença glomerular. Os métodos permitem análise detalhada funcional, estrutural e mecanicista da função glomerular, que pode ser aplicada a todos os modelos do rato da doença glomerular.
O uso de modelos murino para imitar a doença de rim humano está se tornando cada vez mais comum. Nossa pesquisa enfoca a avaliação da função glomerular na nefropatia diabética e podocyte específicos VEGF-A mata-mata ratos; Portanto, este protocolo descreve o rim completo check-up usado em nosso laboratório para avaliar estes modelos do rato da doença glomerular, permitindo uma vasta quantidade de informações sobre o rim e função glomerular para ser obtido um único rato. Em comparação com métodos alternativos apresentados na literatura para avaliar a função glomerular, o uso do método descrito neste artigo permite que o fenótipo glomerular ser completamente avaliada de múltiplos aspectos. Usando esse método, o pesquisador pode determinar o fenótipo de rim do modelo e avaliar o mecanismo quanto por que desenvolve o fenótipo. Esta informação vital sobre o mecanismo da doença é necessária quando examinar o potenciais terapêuticas avenidas nesses modelos. Os métodos permitem avaliação funcional detalhada da barreira de filtração glomerular através da medição da creatinina urinária de albumina e permeabilidade de água glomerular individual, bem como exame estrutural e ultra-estruturais usando o ácido periódico-Schiff mancha e microscopia eletrônica. Além disso, análise da desregulação de genes no nível de mRNA e proteína permite análise mecanicista da função glomerular. Este protocolo descreve os métodos genéricos mas adaptávelas que podem ser aplicados a todos os modelos do rato da doença glomerular.
O uso de modelos murino para imitar a doença de rim humano está se tornando cada vez mais comum. Tais modelos murino incluem modelos espontâneos como espontaneamente hipertensos (SHR) de ratos1, estreptozotocina (STZ)-induzida ratos diabéticos e ratos2, e o db/db tipo II ratos diabéticos3, modelos geneticamente modificados tais como primário podocyte específicas focal segmentar glomerular esclerose (FSGS) modelos4, o específico das endotelial fator de crescimento vascular (VEGF-A) nocaute (KO VEGF-A) modelo5, e a síndrome de Alport modelos6e adquiriu modelos como o de nefrectomia 5/6,7 e o modelo de obstrução ureteral unilateral (UUO)8. A fim de avaliar os diferentes aspectos da função glomerular nestes modelos, várias técnicas estão disponíveis. O propósito deste trabalho método é demonstrar um completo check-up deve ser executada em modelos do rato da doença renal para avaliar plenamente a função glomerular.
A lógica por trás do uso deste método é que ele permite que o fenótipo glomerular ser completamente avaliada de múltiplos aspectos. Isso inclui avaliar a permeabilidade glomerular, a proteína e a água, o glomerulares anormalidades estruturais e mudanças na expressão/emenda de mRNAs e proteínas essenciais para a função glomerular normal. Usando esse método, o pesquisador é capaz de determinar o fenótipo de rim do modelo e avaliar o mecanismo quanto por que desenvolve o fenótipo. Esta é a informação vital sobre o mecanismo da doença, que é necessária, ao examinar o potenciais terapêuticas avenidas nesses modelos.
Na literatura, é uma ocorrência comum para ser apresentado com um modelo do rato da doença glomerular, onde o fenótipo é determinado por um aumento do nível de albumina na urina. No entanto, há evidências que sugerem que um único método para determinar a função glomerular não é sempre eficaz; apenas medir a taxa de excreção de albumina urinária ou a creatinina urinária de albumina (uACR) fornece informações sobre a função renal total e não de glomérulos individuais. Estudos anteriores demonstraram que a permeabilidade pode variar em diferentes glomérulos do mesmo rim5,9,10. Além disso, a avaliação da permeabilidade dos glomérulos individuais é uma maneira mais sensível de avaliação de função glomerular; a técnica de medir a permeabilidade de água glomerular individual (LpA / V eeu) tem demonstrado ser mais sensível às mudanças na função glomerular do que medir a uACR9. Este ensaio é benéfico em modelos do rato que são resistentes a proteinúria, tais como os de um fundo de c57BL/611. A vantagem do papel presente método é que ele examina a total permeabilidade renal de albumina, bem como a permeabilidade glomerular individual para água.
Exame de anormalidades estruturais glomerulares é muitas vezes avaliado por uma bateria de manchas, tais como ácido periódico Schiff (PAS), tricromo e manchas de prata. Estes permitem uma patologista renal treinada avaliar o nível de doença renal, através de um método de pontuação. Apesar de todos os bons métodos, alterações à macroestrutura glomerular não são sempre observados na lesão renal aguda modelos12. Este método propõe que além de realizar as técnicas de histologia renal descritas acima, a ultraestrutura glomerular também deve ser avaliada através de microscopia eletrônica (EM). Um glomérulo manchado pode parecer relativamente normal sob um microscópio de luz normal; no entanto, após avaliação com EM, pequenas mudanças na largura da membrana basal glomerular (MBG), apagamento de processo podocyte pé, fenestrações endoteliais e a cobertura do espaço sub-podocyte é analisado. Portanto, é vital que a ultraestrutura glomerular e a microestrutura é avaliado para determinar o mecanismo da disfunção glomerular.
Além de avaliar anormalidades glomerulares estruturais, alterações em mRNA e expressão de proteínas e de emenda, bem como ativação de proteína (por exemplo, a fosforilação), devem ser examinadas para elucidar ainda mais os mecanismos de doença glomerular. Quando se olha para uma doença glomerular, ou, por exemplo, quando KO/over-expressing um gene especificamente em células glomerulares, como por exemplo o podocyte específico VEGF-A KO rato5, é importante que as alterações da proteína e do mRNA são examinadas apenas dentro do células glomerulares e não o rim. Este protocolo descreve um método em que os glomérulos são isolados do córtex renal do mouse, e então o proteína/RNA são isolados. Isto permite a análise da desregulação da proteína/mRNA em glomérulos do modelo de doença.
Este protocolo descreve um rim completo check-up que deve ser realizado em modelos do rato da doença glomerular, permitindo uma vasta quantidade de informações sobre o rim e função glomerular para ser obtido um único rato. Os métodos permitem análise detalhada funcional, estrutural e mecanicista da função glomerular, que pode ser aplicada a todos os modelos do rato da doença glomerular.
Este protocolo descreve um rim completo check-up que deve ser realizado em modelos do rato da doença glomerular, permitindo uma vasta quantidade de informações sobre o rim e função glomerular para ser obtido um único rato. Os passos críticos em cada método de permitam a análise detalhada de funcional, estrutural e mecanicista da função glomerular, incluindo avaliação de permeabilidade dos rins como um todo (uACR e plasma medições creatinina), a permeabilidade do glomérulos individuais (glomerular LpA / V eeu), exame das alterações estruturais (PAS, Trichrome azul e EM), a localização da proteína (IF) e expressão de gene glomerular (RT-PCR e mancha ocidental). Esses métodos são a chave para a avaliação completa da função glomerular em modelos do rato da doença renal.
Ao avaliar a permeabilidade da GFB, muitos estudos optou por usar a uACR ou 24h albumina excreção taxa convencional como uma medida eficaz de17,18. Embora estas técnicas permitem apreciar a permeabilidade GFB como um todo, não permite para avaliação da permeabilidade glomerular individual e variação entre glomérulos. Estudos anteriores descobriram medição de glomerular LpA / Vi para ser uma medida mais sensível de mudanças para a permeabilidade GFB5,9. Com efeito, nos resultados do representante demonstrados neste trabalho, com 14 semanas postar indução de VEGF-A KO, VEGF-A KO X Neph-VEGF-A165b ratos têm um uACR significativamente menor em comparação com ratos VEGF-A KO; no entanto, este resultado não é reflectido no glomerular LpA / V medições, onde VEGF-A165b não impediu significativamente aumenta no GFB permeabilidade (Figura 1 e Figura 2)5. Isso mostra a importância do uso de múltiplos ensaios para avaliar tanto a permeabilidade do rim e a permeabilidade dos glomérulos individuais. Além disso, o glomerular LpA / V oncometric ensaio sugere que a permeabilidade dos glomérulos individuais do mesmo rim pode variar muito, especialmente na doença modela5,10, 19. uma limitação para medir o glomerular LpA / V,eu é que só pode ser realizada no ponto final experimental; assim, as medições regulares uACR são obrigadas a dar uma indicação do ponto final experimental.
Além de avaliar o fenótipo funcional, o método presente também incentiva a avaliação do fenótipo estrutural e ultraestrutural. Isso pode ser feito usando uma variedade de manchas como PAS, tricromo e manchas de prata; cada para avaliar diferentes aspectos da morfologia glomerular. Em modelos agudos da doença glomerular, que é frequentemente o caso em modelos do rato, é pode ser difícil de detectar qualquer anormalidade estrutural principal usando essas manchas, a menos que você é uma patologista treinada renal. Portanto, realizando EM sugere-se para avaliar a ultraestrutura da GFB, que permite a medição quantitativa de parâmetros como o GBM, fenestras endotelial tamanho e número e características de podocyte. Tais medidas exigem treinamento mínimo executar e permite que o investigador determinar as célula-tipos/estruturas afectadas em um modelo de doença. No exemplo mostrado nos resultados representativos, o mouse VEGF-A KO foi encontrado para ser um modelo leve de doença glomerular, assim, não há anormalidades estruturais principais estavam presentes após coloração PAS. No entanto, podocyte específicos VEGF-A KO induzir alterações para o GBM, podócitos e células endoteliais ao examinar a ultraestrutura glomerular5. Infelizmente, a preparação do rim EM descrito no presente método não permitem a detecção do glicocálix endotelial, que também é conhecido por ter efeitos significativos sobre a permeabilidade da GFB19. Para medir com precisão a profundidade de glicocálix, o rim deve ser perfundir-fixo com glutaraldeído 2,5% com 1% azul de Alcian por glicocálix endotelial rotulagem, conforme descrito em Sérgio et al.19.
Uma vez que o fenótipo funcional e estrutural foram avaliados, os padrões de expressão/ativação de genes diferentes e os caminhos então podem ser avaliados especificamente em glomérulos. Prévia avaliação ultra estrutural poderia dar algumas informações sobre a célula tipos/glomerular estruturas envolvidas, indicando se podocyte ou endoteliais específicas-genes/vias devem ser examinadas. Por exemplo, nos resultados representativos dos ratos VEGF-A KO, uma redução do número de fenestras endotelial foi observada (Figura 3D); Portanto, a expressão da proteína glomerular de um marcador endotelial, conhecido por ser envolvidas na via de VEGF-A foi examinada; VEGFR-2 (Figura 4B)5. Além da expressão de proteínas em glomérulos, sua localização também pode ser visualizada usando-se. Em um estudo realizado por Zhang et al.20, podocyte específicos superexpressão de GLUT1 foi confirmada nos podócitos por se co localizando o GLUT1 aumento com podocin.
Em comparação com métodos alternativos apresentados na literatura para avaliar a função glomerular, o uso do método descrito neste artigo para avaliar a função renal em modelos do rato da doença glomerular permite que o fenótipo glomerular ser completamente avaliada de múltiplos aspectos. Usando esse método, o pesquisador é capaz de determinar o fenótipo de rim do modelo e avaliar o mecanismo quanto por que desenvolve o fenótipo. Esta informação vital sobre o mecanismo da doença é necessária quando examinar o potenciais terapêuticas avenidas nesses modelos. Esse método pode ser facilmente aplicado para futuras investigações sobre função glomerular na avaliação dos fenótipos de doença e terapêutica potencial.
Em conclusão, este protocolo genérico e adaptável descreve um rim completo check-up para os modelos do rato da doença glomerular, permitindo uma vasta quantidade de informações sobre o rim e função glomerular para ser obtido um único rato. Os métodos permitem análise detalhada funcional, estrutural e mecanicista da função glomerular, que pode ser aplicada a todos os modelos do rato da doença glomerular.
The authors have nothing to disclose.
Este trabalho foi apoiado pela Fundação britânica do coração, Richard Bright VEGF pesquisa Trust e o MRC.
Metabolic Cages | Harvard Apparatus | 52-6731 | |
Tris buffered saline (10x) | Sigma-Aldrich | T5912-1L | |
Bovine Serum Albumin | Sigma-Aldrich | A2058 | |
Mouse Albumin ELISA Quantitation Set | Bethyl Laboratories | E90-134 | |
TMB ELISA Substrate solution | ThermoFisher Scientific | 34028 | |
Sulphuric acid | Sigma-Aldrich | 339741 | |
SPECTRstar nano | BMG Labtech | SPECTRstar nano or equivalent | |
RNAlater stabilisation solution | ThermoFisher Scientific | AM7020 | |
4-15% precast protein gel | BIORAD | 4568084 | |
4x Laaemmli Sample buffer | BIORAD | 161-0747 | |
Mini Trans-Blot cell | BIORAD | 1703930 | |
10x Tris running buffer | BIORAD | 1610732 | |
Coomassie Brilliant Blue Dye | ThermoFisher Scientific | 20278 | |
Creatinine Companion | Exocell | 1012 Strip Plate | |
Glutaraldehyde Solution | Sigma-Aldrich | G5882 | |
Sodium Cacodylate | Sigma-Aldrich | C0250 | |
10x Phosphate Buffered Saline | ThermoFisher Scientific | AM9625 | |
Sodium Chloride | Sigma-Aldrich | S7653 | |
Sodium Acetate | Sigma-Aldrich | S2889 | |
Sodium Phosphate | Sigma-Aldrich | 342483 | |
Sodium Bicarbonate | Sigma-Aldrich | S5761 | |
Magnesium Sulfate | Sigma-Aldrich | M2643 | |
Calcium Chloride | Sigma-Aldrich | C5670 | |
D(+)Glucose | Sigma-Aldrich | G8270 | |
EDTA Blood Collection tubes | BD | 367835 | |
23-25G Needle | BD | PMC0735 | |
EDTA | Sigma-Aldrich | E9884 | |
10 ml Glass Vial | Thomas Scientific | 0914X10 | |
Falcon 10 ml Polypropylene Tubes | ThermoFisher Scientific | 10110101 | |
0.5 ml Tubes | ThermoFisher Scientific | 10681894 | |
Disposable Tissue Molds | ThermoFisher Scientific | 22-363-553 | |
Mouse Surgical Disection Kit | ThermoFisher Scientific | 13-005-204 | |
Optimal Cutting Medium | ThermoFisher Scientific | 23-730-571 | |
4% Paraformaldehyde | ThermoFisher Scientific | AAJ19943K2 | |
Glass Capillary Tubes | Harvard Apparatus | EC1 64-0770 | |
Glomerular Permeability Rig | Built at the Univeristy of Bristol – not comercially available | Citation of LpA rig: Salmon et al. 2006; J. Physiol | |
Stainless Steel Sieves | Cole-Parmer | WZ-59984 | |
Periodic Acid-Schiff (PAS) Staining System | Sigma-Aldrich | 395B-1KT | |
Hematoxylin | Sigma-Aldrich | H3136 | |
Xylene | MerckMillipore | 108298 | |
Poly-Prep Slides | Sigma-Aldrich | P0425-72EA | |
Mounting Medium | ThermoFisher Scientific | 8030 | |
Osmium tetroxide solution | Sigma-Aldrich | 75632 | |
Aradite Resin | Agar Scientific | CY212 | |
Uranyl Acetate | Agar Scientific | AGR1260A | |
Lead Citrate | Agar Scientific | AGR1210 | |
Cryostat | ThermoFisher Scientific | e.g. 957000H | |
Hydrophobic Pen | Abcam | ab2601 | |
Nephrin (1243-1256) Antibody | Acris | BP5030 | |
Anti-Podocin | Sigma-Aldrich | P0372-200UL | |
Anti-CD31 | BD Biosciences | 550274 | |
Alexa Fluor Secondary Antibody | ThermoFisher Scientific | A32732 | |
Vectashield Mounting Medium with DAPI | Vector Labs | H-1200 | |
NP40 Cell Lysis Buffer | ThermoFisher Scientific | FNN0021 | |
Halt Protease and Phosphatase Inhibitor Cocktail | ThermoFisher Scientific | 78437X4 | |
10x Transfer Buffer | BIORAD | 1610734 | |
PVDF Membrane | ThermoFisher Scientific | LC2002 | |
HRP-Conjugated Secondary Antibodies | Abcam | ab6721 | |
ECF Substrate for Western Blotting | Fisher | 10713387 | |
TRIzol | ThermoFisher Scientific | 15596018 | |
Dnase I | New England Biolabs | M0303S | |
M-MLV Reverse Transcriptase | New England Biolabs | M053S | |
Oligo dT | ThermoFisher Scientific | 18418012 | |
Random Primers | ThermoFisher Scientific | 48190011 | |
dNTP | ThermoFisher Scientific | 18427088 | |
Ribonuclease Inhibitor | ThermoFisher Scientific | 10777019 | |
DEPC Water | ThermoFisher Scientific | AM9915G | |
Fluorescent Light Miscroscope | Leica Microsystems | ||
Image J Analysis Software | Image J | ||
PCR Thermocycler | ThermoFisher Scientific | ||
TEM Microscope | Britannica |