La synthèse de haute qualité en vrac et de la couche mince (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x)) O et (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x )) Oxydes d’entropie stabilisé O est présenté.
Nous présentons ici une méthode de synthèse de vrac et de composants de multiples couches minces (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x)) O (variante de Co) et (Mg0.25(1-x)Co0.25(1-x)Ni 0.25(1-x) CuxZn0.25(1-x)) O (variante Cu) stabilisé entropie oxydes. La phase pure et chimiquement homogène (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x)) O (x = 0,20, 0,27, 0,33) et (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x) CuxZn0.25(1-x)) O (x = 0,11, 0,27) pastilles de céramique sont synthétisés et utilisés dans les dépôts de très haute qualité, la phase des films minces cristallines pures et simples de la stoechiométrie de la cible. Une méthodologie détaillée pour le dépôt de couches minces d’oxyde entropie stabilisé, chimiquement homogène et lisse par la déposition de laser pulsé sur des substrats de MgO (001) orienté est décrite. La phase et la cristallinité de vrac et de matériaux minces sont confirmées à l’aide de la diffraction des rayons x. Composition et homogénéité chimique sont confirmés par spectroscopie de photoélectrons x et dispersive en énergie. La topographie de surface des couches minces est mesurée avec la sonde au microscope à balayage. La synthèse de haute qualité, films minces seul oxyde cristallin, entropie stabilisé permet l’étude de l’interface, la taille, la souche et trouble des effets sur les propriétés dans cette nouvelle classe de matériaux hautement désordonnée d’oxyde.
Depuis la découverte des alliages métalliques haute-entropie en 2004, matériaux haute entropie ont suscité un intérêt considérable en raison des propriétés telles que l’augmentation de dureté1,2,3, dureté4, 5et la corrosion résistance3,6. Récemment, haute-entropie oxydes7,8 et borures9 ont été découverts, ouvrant une grande aire de jeux pour les amateurs de matériel. Oxydes, en particulier, peuvent démontrer des propriétés fonctionnelles utiles et dynamiques comme la ferroélectricité10magnetoelectricity11,12, thermo-électriques13et supraconductivité14 . Oxydes d’entropie-stabilisé (OEN) ont récemment démontrés intéressant, une composition dépendant des propriétés fonctionnelles15,16, malgré les troubles importants, faisant de cette nouvelle classe de matériaux particulièrement excitant.
Entropie-stabilisé de matériaux sont chimiquement homogène, multicomposants (généralement avoir cinq ou plusieurs constituants), matériaux monophasés où la contribution entropique configurationnelle () à l’énergie libre de Gibbs () est significatif suffisant pour conduire à la formation d’une seule phase solide solution17. La synthèse de ESOs multicomposants, où trouble configurationnel cationique est observé à travers les sites cationiques, requiert un contrôle précis de la composition, la température, la vitesse de déposition, étancher des taux et étancher température7,16 . Cette méthode vise à permettre le praticien la capacité de synthétiser la phase pure et pastilles de céramique oxyde d’entropie stabilisée chimiquement homogène et phase pure et simple cristallin, plat couches minces de stoechiométrie désirée. Matériaux en vrac peuvent être synthétisés avec plus de 90 % de densité théorique permettant l’étude des propriétés électroniques, magnétiques et structurelles ou utilisent comme sources de techniques de minces physique vapor deposition (PVD). Comme les oxydes stabilisé entropie considérés ici ont cinq cations, des techniques PVD minces qui utilisent cinq sources, telles que l’épitaxie par jet moléculaire (MBE) ou co pulvérisation, sera présenté avec le défi du dépôt de couches minces chimiquement homogènes due à la dérive des flux. Ce protocole se traduit par cristalline, chimiquement homogène, simple plat (rugosité de root-mean-square (RMS) de ~0.15 nm) oxyde stabilisé entropie films minces d’une seule source de matière, qui ne semblent pas posséder la composition chimique nominale. Ce protocole de synthèse de couches minces peut être accélérée par l’inclusion d’in situ de l’électron, techniques de caractérisation optique pour la surveillance en temps réel de la synthèse et de contrôle de la qualité raffinée. Attendue des limitations de cette méthode proviennent de la dérive de l’énergie laser pouvant limiter l’épaisseur des films de qualité inférieure à 1 μm.
Malgré les avancées significatives dans la croissance et caractérisation de couches minces d’oxyde matériaux10,18,19,20,21, la corrélation entre la stéréochimie et structure électronique en oxydes peut conduire à des différences significatives dans le matériau final découlant des différences méthodologiques apparemment insignifiants. En outre, le champ d’oxydes d’entropie stabilisé à plusieurs composantes est plutôt naissant, avec seulement deux rapports récents de la synthèse de couches minces dans la littérature7,16. OEN se prête particulièrement bien à ce processus, contourner les difficultés qui seraient présentées par dépôt chimique en phase vapeur et épitaxie par jet moléculaire. Ici, nous fournissons un protocole de synthèse détaillée de produits en vrac et les couches minces ESOs (Figure 1), afin de minimiser les difficultés, les variations inattendues de propriété, de traitement des matériaux et d’améliorer l’accélération des découvertes dans le domaine.
Nous ont décrit et montré un protocole pour la synthèse de vrac et de haute qualité, simple films cristallins (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x)) O (x = 0,20, 0,27, 0,33) et (Mg0.25(1-x) Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x)) O (x = 0,11, 0,27) stabilisé entropie oxydes. Nous espérons que ces techniques de synthèse s’applique à un large éventail de compositions d’entropie stabilisé oxyd…
The authors have nothing to disclose.
Ce travail a été financé en partie par National Science Foundation grant no. DMR-0420785 (XPS). Nous remercions l’Université du Michigan Michigan Center pour la caractérisation des matériaux, (MC)2, pour son aide avec XPS et le laboratoire de l’Université du Michigan Van Vlack XRD. Nous tenons également à remercier Thomas Kratofil pour son aide avec la préparation de matériaux en vrac.
MAGNESIUM OXIDE 99.95% | Fisher | AA1468422 | |
COBALT(II) OXIDE, 99.995% | Fisher | AA4435414 | |
NICKEL(II) OXIDE 99.998% | Fisher | AA1081914 | |
COPPER(II) OXIDE 99.995% | Fisher | AA1070014 | |
ZINC OXIDE 99.99% | Fisher | AA8781230 | |
TRICHLROETHLENE SEMICNDTR 9 | Fisher | AA39744K7 | |
ACETONE SEMICNDTR GRD 99.5% | Fisher | AA19392K7 | |
2-PROPANOL ACS 99.5% | Fisher | A416S4 | |
Mineral oil, pure | Acros Organics | AC415080010 | |
alumina crucible | MTI Corporation | eq-ca-l50w40h20 | |
ZIRCONIA (YSZ) GRINDING MEDIA | Inframat Advanced Materials | 4039GM-S010 | |
SiC paper 320/600/800/1200 | South Bay Technology | SDA08032-25 | |
MgO (100) substrate, 5x5x0.5 mm, 1SP | MTI Corporation | MGa050505S1 | |
OXYGEN COMPRESSED ULTRA HIGH PURITY GRADE, 99.999% | Cryogenic Gases | OXYUHP | |
NITROGEN COMPRESSED EXTRA DRY GRADE | Cryogenic Gases | NITEX |