Summary

Tek hücre Multiplex Ters transkripsiyon polimeraz zincir tepkimesi sonra yama-kelepçe

Published: June 20, 2018
doi:

Summary

Bu iletişim kuralı kritik adımlar ve yama-kelepçe sonra tek hücre multiplex Ters transkripsiyon polimeraz zincir reaksiyonu gerçekleştirmek için gereken önlemleri açıklar. Bu teknik ifade profil genler tarafından yama-kelepçe kayıtları ile karakterize bir tek hücreden önceden belirlenmiş bir dizi analiz etmek için basit ve etkili bir yöntemdir.

Abstract

Serebral korteks çeşitli morfolojik, fizyolojik ve moleküler özellikler sergileyen çok sayıda hücre türleri oluşur. Bu hücre türleri, özel işlevleriyle çalışmak için Önkoşullar malzemelerin kolay tanımlanması ve bu çeşitliliği engellemektedir. Bu makalede, sonra yama-kelepçe dilimler halinde kayıt aynı anda onlarca genlerin ifade tek bir hücreye algılamak için sağlar multiplex tek hücre Ters transkripsiyon polimeraz zincir reaksiyonu (RT-PCR) protokolünü açıklar. Bu basit yöntem ile morfolojik karakterizasyonu uygulanabilir ve kan damarlarının çevresinde gibi çeşitli hücre tiplerinin ve belirli hücresel çevreleri, fenotipik özellikleri belirlemek için yaygın olarak uygulanabilir. Bu iletişim kuralı bir hücre hasat ve ters yama-klemp tekniği ile uyarlamak sitoplazmik içeriğini kaydetmek için ve niteliksel algılamaya genler tarafından önceden tanımlanmış bir dizi ifade multiplex PCR ilkedir. PCR astar ve hücre içi yama-kelepçe çözüm RT-PCR ile uyumlu dikkatli bir tasarım gerektirir. Seçici ve güvenilir transkript sağlamak için algılama, bu teknik aynı zamanda sitoplazma amplifikasyon merdiven-e doğru hasat uygun denetimlerinin gerektirir. Burada tartışılan önlemler kesinlikle takip edilmesi gereken rağmen hemen hemen her elektrofizyolojik laboratuvar multiplex tek hücre RT-PCR tekniği kullanabilirsiniz.

Introduction

Serebral korteks çok sayıda hücre tipleri çeşitli fizyolojik süreçlerinde yer oluşmaktadır. Kendi kimlik ve karakterizasyonu, özel işlevleriyle, anlayış için bir ön koşul kortikal hücre tip1 karakterize büyük morfolojik, fizyolojik ve moleküler çeşitliliği göz önüne alındığında çok zor olabilir ,2,3,4.

Tek hücreli multiplex RT-PCR yama-kelepçe ve RT-PCR teknikleri kombinasyonuna dayanmaktadır. Aynı anda electrophysiologically tanımlanan hücreleri530’dan fazla önceden tanımlanmış genlerin ifade sonda. Histochemical vahiy6,7,8,9, sonra kaydedilen hücrelerin karakterizasyonu morfolojik dahil edilmesi daha fazla kayıt pipet nöronal bir izleyici sağlar 10. onların fenotipik özellikleri5,9,10,11,12 çok değişkenli analize dayalı nöronal türleri sınıflandırılması için çok kullanışlı bir yöntemdir ,13,14. Tek hücre multiplex RT-PCR da astrocytes15,16,17gibi sigara nöronal hücrelerin karakterizasyonu için uygundur ve hemen hemen her beyin yapısı-18uygulanabilir, onlar bütün hücreli yapılandırmada kaydedilebilir varsayarak 19,20,21,22,23 ve hücre tipi.

Bu teknik çok hücresel kaynakları tanımlaması ve/veya iletim sistemleri7,8,15,16,20,21hedefleri için uygundur, özellikle belirli antikor eksik zaman 24,25,26,27,28,. Bu yama-kelepçe kayıtları görsel olarak tanımlanan hücreleri29kullanır ve böylece aynı zamanda hücreleri belirli hücresel ortamı8,15,16hedefleme sağlar. Beyin dokusu cytoarchitecture beyin dilimler halinde korunmuş olduğundan, Ayrıca bu yaklaşım da anatomik ilişkileri nöronal ve nöronal elements7,8 ile karakterize hücrelerinin çalışma sağlar , 18.

Bu tekniği hasat sitoplazma miktarı ve RT verimliliğini tarafından sınırlı olduğu için düşük kopya sayısı ifade mRNA tespiti zor olabilir. Yüksek üretilen iş pahalı sıralayıcılar ihtiyaçları ille RNaseq teknolojisine dayalı diğer yaklaşımlar tek hücreleri3,4,30,31, Bütün transcriptome analiz etmek için izin rağmen Her laboratuvar için kullanılabilir. Tek hücre multiplex RT-PCR tekniği son nokta PCR kullandığından, yalnızca yaygın olarak kullanılan thermocyclers gerektirir. Bu kolayca elektrofizyolojik set-up ile donatılmış laboratuarlarında geliştirilen ve pahalı ekipman gerektirmez. O, bir gün içinde bir kalitatif analiz genler önceden tanımlanmış bir dizi ifade sağlayabilir. Bu nedenle, bu yaklaşım hızlı bir şekilde tek hücreleri moleküler karakterizasyonu kolay bir erişim sunmaktadır.

Protocol

Hayvanlar kullanarak tüm deneysel prosedürler Fransız düzenlemeler (kod kırsal R214/87 için R214/130) ile sıkı uygun olarak gerçekleştirilen ve Avrupa Ekonomik Topluluğu (86/609/EEC) ve Fransız Ulusal Charter etik kuralları için standartlarla uyumlu hayvan deney etik üzerinde. Tüm iletişim kuralları Charles Darwin Etik Komitesi tarafından onaylanmış ve eğitim ve araştırma (onay 2015 061011367540) Fransız Bakanlığa gönderilmiş. IBPS hayvan tesisi Fransız yetkililer (A75-05-24) tarafından akr…

Representative Results

Multiplex RT-PCR temsilcisi doğrulamasına Şekil 3′ te gösterilmiştir. Protokol aynı anda 12 farklı genler ifade soruşturma için tasarlanmıştır. Veziküler glutamat ışınlama vGluT1 glutamatergic nöronlar42için pozitif kontrol olarak alınmıştır. Enzimler (GAD65 ve GAD 67), peptit Y (NPY) ve Somatostatin (SOM) sentezleme GABA GABAergic interneurons3,5,</s…

Discussion

Tek hücre multiplex RT-PCR electrophysiologically tanımlanan hücreleri530’dan fazla genlerin ifade aynı anda ve güvenilir bir şekilde yama-kelepçe yoklama sonra. Gen ifadesinin tek hücre düzeyinde analiz yüksek verimli PCR astar gerektirir. En sınırlayıcı adımlardan biri hücrenin içerik topluluğudur. Verimlilik hücre boyutu eşleştirme sırasında mümkün olduğu kadar büyük olmalıdır yama pipet ucu çapı göre değişir. Pipetler 1-2 µm açık uç çapı en nöronal tü…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Dr Alexandre Mourot el yazması üzerine onun yorum için teşekkür. Bu eser Agence Nationale de la Recherche (ANR 2011 MALZ 003 01; gelen hibe tarafından desteklenmiştir ANR-15-CE16-0010 ve ANR-17-CE37-0010-03), BLG Fondation pour la Recherche sur Alzheimer bursu tarafından desteklenmektedir. IBPS (Paris, Fransa) hayvan tesisi teşekkür ediyoruz.

Materials

MACAW v.2.0.5 NCBI Multiple alignement for primer design
Dithiothreitol VWR 443852A RT
Random primers Sigma-Aldrich (Merck) 11034731001 RT
dNTPs GE Healthcare Life Sciences 28-4065-52 RT and PCR
RNasin Ribonuclease Inhibitors Promega N2511 RT
SuperScript II Reverse Transcriptase Invitrogen 18064014 RT
Taq DNA Polymerase Qiagen 201205 PCR
Mineral Oil Sigma-Aldrich (Merck) M5904-5ML PCR
PCR primers Sigma-Aldrich (Merck) PCR / desalted and diluted at 200 µM
Tubes, 0.5 mL, flat cap ThermoFisher Scientific AB0350 RT and PCR
BT10 Series – 10 µL Filter Tip Neptune Scientific BT10 RT and PCR
BT20 Series – 20 µL Filter Tip Neptune Scientific BT20 RT and PCR
BT200 Series – 200 µL Filter Tip Neptune Scientific BT200 RT and PCR
BT1000 Series – 1000 µL Filter Tip Neptune Scientific BT1000.96 RT and PCR
DNA Thermal Cylcer Perkin Elmer Cetus PCR
Ethidium Bromide Sigma-Aldrich (Merck) E1510-10ML Agarose gel electrophoresis
Tris-Borate-EDTA buffer Sigma-Aldrich (Merck) T4415-1L Agarose gel electrophoresis
UltraPure Agarose Life Technologies 16500-500 Agarose gel electrophoresis
ΦX174 DNA-Hae III Digest NEB (New England BioLabs) N3026S Agarose gel electrophoresis
EDA 290 Kodak Agarose gel electrophoresis
Electrophoresis Power supply EPS 3500 Pharmacia Biotech Agarose gel electrophoresis
Midi Horizontal Elecrophoresis Unit Model SHU13 Sigma-Aldrich (Merck) Agarose gel electrophoresis
Smooth paper with satin appearance Fisherbrand 1748B Patch clamp internal solution
Potassium Hydroxyde Sigma-Aldrich (Merck) 60377 Patch clamp internal solution
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid Sigma-Aldrich (Merck) E3889 Patch clamp internal solution
HEPES Sigma-Aldrich (Merck) H4034 Patch clamp internal solution
Potassium D-gluconate Sigma-Aldrich (Merck) G4500 Patch clamp internal solution
Magnesium chloride solution Sigma-Aldrich (Merck) M1028 Patch clamp internal solution
5500 Vapor Pressure Osmometer Wescor Patch clamp internal solution
Biocytin Sigma-Aldrich (Merck) B4261 Patch clamp internal solution
Sucrose Sigma-Aldrich (Merck) S5016 Slice preparation
D-(+)-Glucose monohydrate Sigma-Aldrich (Merck) 49159 Slice preparation
Sodium chloride Sigma-Aldrich (Merck) S6191 Slice preparation
Potassium chloride Sigma-Aldrich (Merck) 60128 Slice preparation
Sodium bicarbonate Sigma-Aldrich (Merck) 31437-M Slice preparation
Sodium phosphate monobasic Sigma-Aldrich (Merck) S5011 Slice preparation
Magnesium chloride solution Sigma-Aldrich (Merck) 63069 Slice preparation
Calcium chloride solution Sigma-Aldrich (Merck) 21115 Slice preparation
Kynurenic acid Sigma-Aldrich (Merck) K3375 Slice preparation
Isoflurane Piramal Healthcare UK Slice preparation
VT 1000S Leica Biosystems 14047235613 Slice preparation
Hydrogen peroxide solution Sigma-Aldrich (Merck) H1009 Patch Clamp set-up cleaning
Thin Wall Glass Capillaries with filament World Precision Instruments TW150F-4 Patch Clamp
PP-83 Narishige Patch Clamp
Eppendorf Microloader Eppendorf 5242956003 Patch Clamp
BX51WI Upright microscope Olympus Patch Clamp
XC-ST70/CE CCD B/W VIDEO CAMERA Sony Patch Clamp
Axopatch 200B Amplifier Molecular Devices Patch Clamp
Digidata 1440 Molecular Devices Patch Clamp
pCLAMP 10 software suite Molecular Devices Patch Clamp
10 mL syringe Terumo SS-10ES Expelling
E Series with Straight Body (Holder) Phymep 64-0997 Expelling
Sodium phosphate dibasic Sigma-Aldrich (Merck) S7907 Histochemical revelation
Sodium phosphate monobasic Sigma-Aldrich (Merck) S8282 Histochemical revelation
Paraformaldehyde Sigma-Aldrich (Merck) P6148 Histochemical revelation
Triton X-100 Sigma-Aldrich (Merck) X100 Histochemical revelation
Gelatin from cold water fish skin Sigma-Aldrich (Merck) G7041 Histochemical revelation
Streptavidin, Alexa Fluor 488 conjugate ThermoFisher Scientific S11223 Histochemical revelation
24-well plate Greiner Bio-One 662160 Histochemical revelation

Referenzen

  1. Ascoli, G. A., et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat.Rev.Neurosci. 9 (7), 557-568 (2008).
  2. DeFelipe, J., et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat.Rev.Neurosci. , (2013).
  3. Tasic, B., et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat.Neurosci. , (2016).
  4. Zeisel, A., et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. , (2015).
  5. Cauli, B., et al. Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc.Natl.Acad.Sci.U.S.A. 97 (11), 6144-6149 (2000).
  6. Cauli, B., et al. Molecular and physiological diversity of cortical nonpyramidal cells. J.Neurosci. 17 (10), 3894-3906 (1997).
  7. Férézou, I., et al. 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J. Neurosci. 22 (17), 7389-7397 (2002).
  8. Cauli, B., et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J.Neurosci. 24 (41), 8940-8949 (2004).
  9. Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., Markram, H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb.Cortex. 12 (4), 395-410 (2002).
  10. Wang, Y., et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J.Physiol. 561 (Pt 1), 65-90 (2004).
  11. Karagiannis, A., et al. Classification of NPY-expressing neocortical interneurons. J.Neurosci. 29 (11), 3642-3659 (2009).
  12. Battaglia, D., Karagiannis, A., Gallopin, T., Gutch, H. W., Cauli, B. Beyond the frontiers of neuronal types. Front Neural Circuits. 7, 13 (2013).
  13. Toledo-Rodriguez, M., et al. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb.Cortex. 14 (12), 1310-1327 (2004).
  14. Toledo-Rodriguez, M., Goodman, P., Illic, M., Wu, C., Markram, H. Neuropeptide and calcium binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J.Physiol. , (2005).
  15. Lecrux, C., et al. Pyramidal neurons are "neurogenic hubs" in the neurovascular coupling response to whisker stimulation. J.Neurosci. 31 (27), 9836-9847 (2011).
  16. Lacroix, A., et al. COX-2-derived prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the rodent cerebral cortex. J.Neurosci. 35 (34), 11791-11810 (2015).
  17. Matthias, K., et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J.Neurosci. 23 (5), 1750-1758 (2003).
  18. Rancillac, A., et al. Glutamatergic control of microvascular tone by distinct gaba neurons in the cerebellum. J.Neurosci. 26 (26), 6997-7006 (2006).
  19. Miki, T., et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat.Neurosci. 4 (5), 507-512 (2001).
  20. Liss, B., Bruns, R., Roeper, J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 18 (4), 833-846 (1999).
  21. Gallopin, T., et al. Identification of sleep-promoting neurons in vitro. Nature. 404 (6781), 992-995 (2000).
  22. Gallopin, T., et al. The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neurowissenschaften. 134 (4), 1377-1390 (2005).
  23. Fernandez, S. P., et al. Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Struct.Funct. , (2015).
  24. Porter, J. T., et al. Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. J.Neurosci. 19 (13), 5228-5235 (1999).
  25. Hill, E. L., et al. Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons. J.Neurophysiol. 97 (4), 2580-2589 (2007).
  26. Férézou, I., et al. Extensive overlap of mu-opioid and nicotinic sensitivity in cortical interneurons. Cereb.Cortex. 17 (8), 1948-1957 (2007).
  27. Hu, E., et al. PACAP act at distinct receptors to elicit different cAMP/PKA dynamics in the neocortex. Cereb.Cortex. 21 (3), 708-718 (2011).
  28. Louessard, M., et al. Tissue plasminogen activator expression is restricted to subsets of excitatory pyramidal glutamatergic neurons. Mol.Neurobiol. , (2015).
  29. Stuart, G. J., Dodt, H. U., Sakmann, B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch. 423 (5-6), 511-518 (1993).
  30. Cadwell, C. R., et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat.Biotechnol. 34 (2), 199-203 (2016).
  31. Fuzik, J., et al. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat.Biotechnol. 34 (2), 175-183 (2016).
  32. O’Leary, N. A., et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733-D745 (2016).
  33. Schuler, G. D., Altschul, S. F., Lipman, D. J. A workbench for multiple alignment construction and analysis. Proteins. 9 (3), 180-190 (1991).
  34. Ruano, D., Lambolez, B., Rossier, J., Paternain, A. V., Lerma, J. Kainate receptor subunits expressed in single cultured hippocampal neurons: molecular and functional variants by RNA editing. Neuron. 14 (5), 1009-1017 (1995).
  35. Porter, J. T., et al. Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur.J.Neurosci. 10 (12), 3617-3628 (1998).
  36. Ruano, D., Perrais, D., Rossier, J., Ropert, N. Expression of GABA(A) receptor subunit mRNAs by layer V pyramidal cells of the rat primary visual cortex. Eur.J.Neurosci. 9 (4), 857-862 (1997).
  37. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. Basic local alignment search tool. J.Mol.Biol. 215 (3), 403-410 (1990).
  38. Chomczynski, P., Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction. Anal Biochem. 162 (1), 156-159 (1987).
  39. Lee, P. Y., Costumbrado, J., Hsu, C. Y., Kim, Y. H. Agarose gel electrophoresis for the separation of DNA fragments. J.Vis.Exp. (62), (2012).
  40. Liss, B., et al. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat.Neurosci. 8 (12), 1742-1751 (2005).
  41. Lambolez, B., Audinat, E., Bochet, P., Crepel, F., Rossier, J. AMPA receptor subunits expressed by single Purkinje cells. Neuron. 9 (2), 247-258 (1992).
  42. Gallopin, T., Geoffroy, H., Rossier, J., Lambolez, B. Cortical sources of CRF, NKB, and CCK and their effects on pyramidal cells in the neocortex. Cereb.Cortex. 16 (10), 1440-1452 (2006).
  43. Cunningham, M. O., et al. Neuronal metabolism governs cortical network response state. Proc.Natl.Acad.Sci.U.S.A. 103 (14), 5597-5601 (2006).
  44. Tsuzuki, K., Lambolez, B., Rossier, J., Ozawa, S. Absolute quantification of AMPA receptor subunit mRNAs in single hippocampal neurons. J.Neurochem. 77 (6), 1650-1659 (2001).
  45. McCormick, D. A., Connors, B. W., Lighthall, J. W., Prince, D. A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology. 54 (4), 782-806 (1985).
  46. Andjelic, S., et al. Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. J.Neurophysiol. 101 (2), 641-654 (2009).
  47. Cauli, B., Lambolez, B., Bontoux, N., Potier, M. C. Chapter 9: Gene Analysis of Single Cells. Unravelling Single Cell Genomics: Micro and Nanotools. , 81-92 (2010).
  48. Bontoux, N., et al. Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling. Lab Chip. 8 (3), 443-450 (2008).
  49. Sellner, L. N., Coelen, R. J., Mackenzie, J. S. Reverse transcriptase inhibits Taq polymerase activity. Nucleic Acids Res. 20 (7), 1487-1490 (1992).
  50. Perrenoud, Q., Rossier, J., Geoffroy, H., Vitalis, T., Gallopin, T. Diversity of GABAergic interneurons in layer VIa and VIb of mouse barrel cortex. Cereb.Cortex. , (2012).
  51. Tricoire, L., et al. Common origins of hippocampal ivy and nitric oxide synthase expressing neurogliaform cells. J.Neurosci. 30 (6), 2165-2176 (2010).
  52. Cea-del Rio, C. A., et al. M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. J.Neurosci. 30 (17), 6011-6024 (2010).
  53. Tricoire, L., et al. A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J.Neurosci. 31 (30), 10948-10970 (2011).
  54. Franz, O., Liss, B., Neu, A., Roeper, J. Single-cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization-activated cyclic nucleotide-gated ion channels (Ih) in central neurons. Eur.J.Neurosci. 12 (8), 2685-2693 (2000).
  55. Szabo, A., et al. Calcium-permeable AMPA receptors provide a common mechanism for LTP in glutamatergic synapses of distinct hippocampal interneuron types. J.Neurosci. 32 (19), 6511-6516 (2012).
  56. Hodne, K., Weltzien, F. A. Single-Cell Isolation and Gene Analysis: Pitfalls and Possibilities. Int.J.Mol.Sci. 16 (11), 26832-26849 (2015).
  57. Li, H. H., et al. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature. 335 (6189), 414-417 (1988).
  58. Bochet, P., et al. Subunit composition at the single-cell level explains functional properties of a glutamate-gated channel. Neuron. 12 (2), 383-388 (1994).
  59. Audinat, E., Lambolez, B., Rossier, J., Crepel, F. Activity-dependent regulation of N-methyl-D-aspartate receptor subunit expression in rat cerebellar granule cells. Eur.J.Neurosci. 6 (12), 1792-1800 (1994).
  60. Jonas, P., Racca, C., Sakmann, B., Seeburg, P. H., Monyer, H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron. 12 (6), 1281-1289 (1994).
  61. Geiger, J. R., et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron. 15 (1), 193-204 (1995).
  62. Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R., Monyer, H. NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J.Neurosci. 17 (7), 2469-2476 (1997).
  63. Angulo, M. C., Lambolez, B., Audinat, E., Hestrin, S., Rossier, J. Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical nonpyramidal cells. J.Neurosci. 17 (17), 6685-6696 (1997).
  64. Lambolez, B., Ropert, N., Perrais, D., Rossier, J., Hestrin, S. Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc.Natl.Acad.Sci.U.S.A. 93 (5), 1797-1802 (1996).
  65. Liss, B., et al. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J. 20 (20), 5715-5724 (2001).
  66. Aponte, Y., Lien, C. C., Reisinger, E., Jonas, P. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J.Physiol. 574, 229-243 (2006).

Play Video

Diesen Artikel zitieren
Devienne, G., Le Gac, B., Piquet, J., Cauli, B. Single Cell Multiplex Reverse Transcription Polymerase Chain Reaction After Patch-clamp. J. Vis. Exp. (136), e57627, doi:10.3791/57627 (2018).

View Video