Summary

检测梭菌感染后抗原特异性抗体应答的蛋白微阵列测定方法

Published: June 15, 2018
doi:

Summary

本文介绍了一种简单的蛋白质芯片方法, 用于分析人体血清中高纯度菌抗原7丛细胞的体液免疫反应。该协议可推广用于测定多克隆静脉注射免疫球蛋白制剂中特异抗体的反应。

Abstract

我们提供了一种新的高通量蛋白微阵列检测方法, 用于测定人血清中的抗菌抗体水平, 以及单独制备多克隆静脉注射免疫球蛋白 (球蛋白)。该议定书描述了样品制备、阵列印刷、化验程序和数据分析所涉及的方法步骤。此外, 本议定书还可进一步发展, 以纳入多种临床样本, 包括血浆和细胞培养上清液。我们展示了如何使用蛋白微阵列来确定同种的组合 (IgG, IgA, IgM), 子类 (IgG1, IgG2, IgG3, IgG4, IgA1, IgA2), 和应变特异抗体的高度纯化全C. 梭菌毒素 a 和 B (toxinotype 0, 应变新品10463, ribotype 087), 毒素 b 从一个C. 芽孢杆菌毒素 b 只表达应变 (CCUG 20309), 一种前体形式的 b 片段的二元毒素, pCDTb, ribotype 特定的整个表面层蛋白 (SLPs; 001, 002, 027) 和控制蛋白 (破伤风毒素和白色念珠菌)。在实验中, 微阵列是用C…………………………..治疗 CDI, 联合免疫机能丧失障碍, 慢性炎症性脱髓鞘 polyradiculopathy。我们在免疫球蛋白治疗前和之后的毒素中和疗效和多同种特异抗体水平上均有显著差异。此外, 基因芯片与酶联免疫吸附试验 (ELISA) 在血清样品中抗毒素 IgG 水平有显著的相关性。这些结果表明, 微阵列可能成为一个很有希望的工具来分析抗体反应的C.随着抗原板的进一步细化和生产成本的降低, 我们预计微阵列技术可以帮助优化和选择临床上最有用的免疫疗法, 以病人特有的方式感染.

Introduction

该协议描述了一种新的和自定义的蛋白质微阵列检测和半定量的细菌应变和同种特异抗体反应的C.我们成功地使用了我们的C. 梭菌特异微阵列检测作为一个有希望的新工具的成分生物分析中的具体抗体含量的患者血清1,2, 免疫球蛋白3的准备, 并识别与 CDI4中不良结局相关的抗体特异性。我们展示了如何 biobanked 血清样品和免疫球蛋白的商业制剂可以分析在微阵列, 允许高质量的重现性分析的C.

许多健康的儿童和成人有检测到的血清 IgG 和 IgA 抗体的C. 梭菌毒素 a 和 B5,6。这些被认为是发生在婴儿期短暂暴露后, 在成年后接触到C.由于这个原因, 多克隆免疫球蛋白已被使用离标签治疗复发和暴发的 CDI7,8,9。然而, 它的明确作用和行动方式仍然不清楚。几项研究表明, 体液免疫反应的C. 梭菌毒素在疾病的呈现和结果中发挥作用。具体而言, 无症状患者显示, 血清抗毒素抗体浓度增加, 与发育症状性疾病10的患者相比。据报, 有一个明显的关联, 其中中位抗毒素抗体滴度和30天全死因死亡率11。一些报告还揭示了一个协会的预防复发和抗体反应的毒素 a, B, 和一些非毒素抗原 (Cwp66, Cwp84, FliC, FliD 和表层蛋白 (SLPs))12,13,14,15. 这些观察刺激了第一个被动免疫治疗药物靶向C. 刺杆菌毒素 B (bezlotuxumab), 最近被美国食品和药物管理局和欧洲药品批准防止经常性 CDI16的机构。使用灭活毒素或重组毒素片段的免疫接种战略目前也在开发171819。这些新的治疗方法无疑将刺激对大样本大小的多抗原的体液免疫应答的评估要求。

今天, 有明显的缺乏商业可用的高通量检测, 能够同时评估细菌的应变和同种特异抗体反应的C. 梭菌抗原。目前尚无未满足的需要开发这种化验, 以促进今后的研究工作和临床应用。蛋白质微阵列是一种将大量单独纯化的蛋白质作为空间组织的斑点排列在微观滑动表面上的一种方法, 使用机器人系统, 可以是接触20或非接触印刷工具21。斑点可能代表复杂的混合物, 如细胞裂解物, 抗体, 组织组织匀浆, 内源性或重组蛋白或肽, 体液或药物22,23

蛋白质微阵列技术比标准的内部 ELISA 技术具有明显的优势, 传统的检测方法用于评估抗C.其中包括提高检测一系列多同种特异抗体的能力, 针对更广泛的蛋白质靶点, 减少抗原、样品和试剂的体积要求, 以及增强吸收更大技术复制的数量, 除了多个内部质量控制 (QC) 措施1。因此, 微阵列更灵敏、准确、重现性强, 具有更大的动态范围。这些因素使微阵列成为一种更便宜和潜在的有利替代 ELISAs 的大规模检测已知蛋白质。然而, 微阵列技术的缺点主要是由于建立了高度纯化抗原的面板, 建立了技术平台, 导致了巨大的前置成本。

蛋白质微阵列作为临床应用的诊断和基础研究工具, 在过去的两年中得到了广泛的应用。具体应用包括蛋白质表达谱、酶基质关系的研究、生物标志物筛选、寄主-微生物相互作用分析、以及分析抗体特异性2324 25,26,27,28。许多新的病原体蛋白/抗原微阵列已经建立, 包括疟疾 (疟原虫)29, HIV-130, 流感31, 严重急性呼吸道综合征 (SARS)32, 病毒性出血热33, 疱疹病毒34, 结核病35

本议定书涉及建立一个易于操作的c. 梭菌反应抗原微阵列检测, 这使得对 C 的多同种和应变特异抗体反应的准确、精确和具体量化血清中的梭菌抗原和多克隆免疫球蛋白。在这方面, 我们包括了与 ELISA 相比可接受的微阵列检测性能的具有代表性的结果, 以及测定的精确度和重现性。该方法可进一步开发, 以分析其他临床样本, 并制定一个新的标准, 研究的分子基础的 CDI。

Protocol

1. 制备微阵列板 用印刷缓冲器稀释C. 梭菌抗原 [PBS-海藻糖 (50 毫米)] 在最佳的浓度 (在运行患者血清之前预定义): 毒素 a (200 µg/毫升) 和毒素 B (100 µg/毫升), pCDTb (200 µg/毫升), 纯化本机整个 SLPs 来自核糖体 001, 002 和 027 (200 µg/毫升)。注: 毒素 b 从毒素 b 表达菌株 CCUG 20309 (90 µg/毫升) 获得。 稀释阳性对照, 裂解物白念珠菌, 破伤风毒素与印刷缓冲器在100µg/毫升。最后, ?…

Representative Results

图 1展示了描述协议中主要步骤的流程图。图 2显示了与检测血清中的 IgG 和 IgA 抗毒素 A 和 B 水平的基因芯片和 ELISA 之间的显著一致的长矛相关性试验。图 3显示了不同的 IgG 和 IgA 抗体类特异抗体反应的毒素 A, 毒素 B, 二进制毒素 (pCDTb) 的患者没有腹泻, CDI 患者腹泻, 和 HC。图 4显示?…

Discussion

在本议定书中, 我们已经表明, 微阵列是一个适当的平台, 以确定体液免疫反应的C. 梭菌蛋白抗原的患者血清 (图36) 和商业制剂丙种球蛋白 (图 5)。我们还表明, 微阵列技术表现良好, 当与常规 ELISA (图 2), 并显示优良的重现性, 与内和间化验多变性在可接受的精确度范围内 (表 1)。

?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项研究得到了爱马仕 Negm 和坦尼娅莫纳汉的支持, 并通过诺丁汉消化系统疾病中心和 NIHR 诺丁汉消化系统疾病生物医学研究中心的单独资助。

Materials

BioRobotics MicroGrid II arrayer Digilab, Malborough, MA, USA N/A Contact arrayer used to automated spotting of the antigens onto the slides.
Scanner InnoScan 710. Innopsys N/A A fluorescent microarray slide scanner with a red (Cy5) laser to read the reaction.
MAPIX software version 7.2.0 Innopsys N/A Measure signal intensities of the spots.
Silicon contact pin Parallel Synthesis Technologies SMT-P75 Print the samples onto the slides.
Thermo Scientific Nalgene Desiccator Thermo Scientific 41102426 To store the new and printed slides.
384-well plate Genetix X7022UN To prepare the antigens.
Plate cover Sigma Aldrich, UK CLS6570-100EA To reduce evaporation of the samples.
Aminosilane slides Schott,  Germany 1064875 The slide of choice for printing the antigens.
Slide holders GraceBio Labs, USA 204862 Divide the slides into identical 16 subarrays. These holders are re-usable, removable, leak-proof wells . 
Candida albicans lysate NIBSC PR-BA117-S Positive control
Tetanus Toxoid  Athens Research and Technology 04/150 Positive control
Immunoglobulin G (IgG), Normal Human Plasma  Athens research and  technology   16-16-090707 Purified Native Human Immunoglobulin G IgG, Human Plasma. 
Immunoglobulin G1 (IgG1), Normal Human Plasma  Athens research and  technology   16-16-090707-1 Purified Native Human Immunoglobulin G1 IgG1, Human Plasma. 
Immunoglobulin G2 (IgG2), Normal Human Plasma  Athens research and  technology   16-16-090707-2 Purified Native Human Immunoglobulin G2 IgG2, Human Plasma. 
Immunoglobulin G3 (IgG3), Normal Human Plasma  Athens research and  technology   16-16-090707-3 Purified Native Human Immunoglobulin G3 IgG3, Human Plasma. 
Immunoglobulin G4 (IgG4), Normal Human Plasma  Athens research and  technology   16-16-090707-4 Purified Native Human Immunoglobulin G4 IgG4, Human Plasma. 
Immunoglobulin A (IgA), Human Plasma  Athens research and  technology   16-16-090701 Purified Native Human Immunoglobulin A (IgA), Human Plasma.
Immunoglobulin A1 (IgA1), Human Myeloma Plasma  Athens research and  technology   16-16-090701-1M Purified Native Human Immunoglobulin A1 (IgA1), Human Plasma.
Immunoglobulin A2 (IgA2), Human Myeloma Plasma  Athens research and  technology   16-16-090701-2M Purified Native Human Immunoglobulin A2 (IgA2), Human Plasma.
Immunoglobulin M (IgM), Human Plasma  Athens research and  technology   16-16-090713 Purified Native Human Immunoglobulin M (IgM), Human Plasma.
Biotinylated Goat Anti-Human IgG Antibody, gamma chain specific Vector Labs BA-3080 Goat anti- human IgG (γ-chain specific)-biotin antibody reacts specifically with human IgG but not with other immunoglobulins.
Mouse Anti-Human IgG1 Hinge-BIOT Southern Biotec 9052-08  Goat anti- human IgG1 biotin antibody reacts specifically with human IgG1 but not with other immunoglobulins.
Mouse Anti-Human IgG2 Fc-BIOT Southern Biotec 9060-08   Goat anti- human IgG2 -biotin antibody reacts specifically with human IgG 2but not with other immunoglobulins.
Mouse Anti-Human IgG3 Hinge-BIOT Southern Biotec 9210-08    Goat anti- human IgG3-biotin antibody reacts specifically with human IgG3 but not with other immunoglobulins.
Mouse Anti-Human IgG4 pFc'-BIOT Southern Biotec 9190-08   Goat anti- human IgG-biotin antibody reacts specifically with human IgG but not with other immunoglobulins.
Anti-Human IgA, alpha chain specific, made in goat – Biotinylated Vector Labs BA-3030 Goat anti- human IgG -biotin antibody reacts specifically with human IgG but not with other immunoglobulins.
Mouse Anti-Human IgA1-BIOT Southern Biotec 9130-08 Goat anti- human IgG -biotin antibody reacts specifically with human IgG but not with other immunoglobulins.
Mouse Anti-Human IgA2-BIOT Southern Biotec 9140-08   Goat anti- human IgG -biotin antibody reacts specifically with human IgG but not with other immunoglobulins.
Mouse Anti-Human IgM-BIOT Southern Biotec 9020-08  Goat anti- human IgG-biotin antibody reacts specifically with human IgG but not with other immunoglobulins.
0.2 mm syringe filter Thermo scientific 723-2520 Filter the 5% BSA.
Bovine Serum Albumin (BSA) Sigma Aldrich, UK A7284 Use 5% BSA for blocking the slides.
Antibody diluent Dako, UK S3022 To dilute the serum and the secondary antibody.
Streptavidin Cy5 eBioscience SA1011 Detection of the immune reaction.
Purified whole C. difficile toxins A and B (toxinotype 0, strain VPI 10463, ribotype 087) Toxins Group, Public Health England NA
Purified whole C. difficile toxin B (CCUG 20309 toxin B only expressing strain) Toxins Group, Public Health England NA
Precursor form of B fragment of binary toxin, pCDTb University of Bath  NA Produced in E. Coli from wholly synthetic recombinant gene construct. Amino acid sequence based on published sequence from 027 ribotype (http:www.uniprot.org/uniprot/A8DS70)
Purified native whole ribotype-specific (001, 002, 027) surface layer proteins Dublin City University  NA
Vigam (IVIg preparation 1) Nottingham University Hospitals NHS Trust N/A
Privigen (IVIg preparation 2) Nottingham University Hospitals NHS Trust N/A
Intratect (IVIg preparation 3) Nottingham University Hospitals NHS Trust N/A

Referenzen

  1. Negm, O. H., et al. Profiling humoral immune responses to Clostridium difficile.-specific antigens by protein microarray analysis. Clinical and Vaccine Immunology. 22 (9), 1033-1039 (2015).
  2. Monaghan, T. M., et al. High prevalence of subclass-specific binding and neutralizing antibodies against Clostridium difficile. toxins in adult cystic fibrosis sera: possible mode of immunoprotection against symptomatic C. difficile infection. Clinical and Experimental Gastroenterology. 10, 169-175 (2017).
  3. Negm, O. H., et al. Protective antibodies against Clostridium difficile. are present in intravenous immunoglobulin and are retained in humans following its administration. Clinical & Experimental Immunology. 188 (3), 437-443 (2017).
  4. Monaghan, T., et al. OC-058 A protein microarray assay for predicting severe outcomes in Clostridium difficile infection. Gut. 66, 31 (2017).
  5. Bacon, A. E. Immunoglobulin G directed against toxins A and B of Clostridium difficile in the general population and patients with antibiotic-associated diarrhea. Diagnostic Microbiology and Infectious Disease. 18 (4), 205-209 (1994).
  6. Viscidi, R., et al. Serum antibody response to toxins A and B of Clostridium difficile. The Journal of Infectious Diseases. 148 (1), 93-100 (1983).
  7. Salcedo, J., et al. Intravenous immunoglobulin therapy for severe Clostridium difficile colitis. Gut. 41 (3), 366-370 (1997).
  8. Abougergi, M. S., Kwon, J. H. Intravenous immunoglobulin for the treatment of Clostridium difficile infection: a review. Digestive Diseases and Sciences. 56 (1), 19-26 (2011).
  9. Shah, N., Shaaban, H., Spira, R., Slim, J., Boghossian, J. Intravenous immunoglobulin in the treatment of severe Clostridium difficile colitis. Journal of Global Infectious Diseases. 6 (2), 82-85 (2014).
  10. Kyne, L., Warny, M., Qamar, A., Kelly, C. P. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. The New England Journal of Medicine. 342 (6), 390-397 (2000).
  11. Solomon, K., et al. Mortality in patients with Clostridium difficile infection correlates with host pro-inflammatory and humoral immune responses. Journal of Medical Microbiology. 62, 1453-1460 (2013).
  12. Kyne, L., Warny, M., Qamar, A., Kelly, C. P. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet. 357 (9251), 189-193 (2001).
  13. Leav, B. A., et al. Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine. 28 (4), 965-969 (2010).
  14. Drudy, D., et al. Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunology and Medical Microbiology. 41 (3), 237-242 (2004).
  15. Bauer, M. P., Nibbering, P. H., Poxton, I. R., Kuijper, E. J., van Dissel, J. T. Humoral immune response as predictor of recurrence in Clostridium difficile infection. Clinical Microbiology and Infection. 20 (12), 1323-1328 (2014).
  16. Wilcox, M. H., et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. The New England Journal of Medicine. 376 (4), 305-317 (2017).
  17. Leuzzi, R., Adamo, R., Scarselli, M. Vaccines against Clostridium difficile. Human Vaccines & Immunotherapeutics. 10 (6), 1466-1477 (2014).
  18. Ghose, C., Kelly, C. P. The prospect for vaccines to prevent Clostridium difficile infection. Infectious Disease Clinics of North America. 29 (1), 145-162 (2015).
  19. Henderson, M., Bragg, A., Fahim, G., Shah, M., Hermes-DeSantis, E. R. A review of the safety and efficacy of vaccines as prophylaxis for Clostridium difficile infections. Vaccines. 5 (3), (2017).
  20. Zhu, H., et al. Global analysis of protein activities using proteome chips. Science. 293 (5537), 2101-2105 (2001).
  21. Delehanty, J. B., Ligler, F. S. Method for printing functional protein microarrays. BioTechniques. 34 (2), 380-385 (2003).
  22. Sutandy, F. X., Qian, J., Chen, C. S., Zhu, H. Overview of protein microarrays. Current Protocols in Protein Science. , 21 (2013).
  23. Huang, Y., Zhu, H. Protein array-based approaches for biomarker discovery in cancer. Genomics, Proteomics & Bioinformatics. 15 (2), 73-81 (2017).
  24. Vigil, A., Davies, D. H., Felgner, P. L. Defining the humoral immune response to infectious agents using high-density protein microarrays. Future Microbiology. 5 (2), 241-251 (2010).
  25. Bacarese-Hamilton, T., Mezzasoma, L., Ardizzoni, A., Bistoni, F., Crisanti, A. Serodiagnosis of infectious diseases with antigen microarrays. Journal of Applied Microbiology. 96 (1), 10-17 (2004).
  26. Davies, D. H., et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proceedings of the National Academy of Sciences of the United States of America. 102 (3), 547-552 (2005).
  27. Wadia, P. P., Sahaf, B., Miklos, D. B. Recombinant antigen microarrays for serum/plasma antibody detection. Methods in Molecular Biology. 723, 81-104 (2011).
  28. Moore, C. D., Ajala, O. Z., Zhu, H. Applications in high-content functional protein microarrays. Current Opinion in Chemical Biology. 30, 21-27 (2016).
  29. Crompton, P. D., et al. A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proceedings of the National Academy of Sciences of the United States of America. 107 (15), 6958-6963 (2010).
  30. Khodakov, D. A., et al. An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. BioTechniques. 44 (2), 241-246 (2008).
  31. Ryabinin, V. A., et al. Universal oligonucleotide microarray for sub-typing of Influenza A virus. PLoS One. 6 (4), 17529 (2011).
  32. Zhu, H., et al. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proceedings of the National Academy of Sciences of the United States of America. 103 (11), 4011-4016 (2006).
  33. Cleton, N. B., et al. Spot the difference: development of a syndrome based protein microarray for specific serological detection of multiple flavivirus infections in travelers. PloS Neglected Tropical Diseases. 9 (3), 0003580 (2015).
  34. Liu, Y., Yu, F., Huang, H., Han, J. Development of recombinant antigen array for simultaneous detection of viral antibodies. PLoS One. 8 (9), 73842 (2013).
  35. Zhou, F., et al. Protein array identification of protein markers for serodiagnosis of Mycobacterium tuberculosis infection. Scientific Reports. 5, 15349 (2015).
  36. Mannsperger, H. A., Gade, S., Henjes, F., Beissbarth, T., Korf, U. RPPanalyzer: analysis of reverse-phase protein array data. Bioinformatics. 26 (17), 2202-2203 (2010).
  37. Monaghan, T. M., et al. Circulating antibody and memory B-cell responses to C. difficile-associated diarrhoea, inflammatory bowel disease and cystic fibrosis. PLoS One. 8 (9), 74452 (2013).
  38. Grainger, D. W., Greef, C. H., Gong, P., Lochhead, M. J. Current microarray surface chemistries. Methods in Molecular Biology. 381, 37-75 (2007).
  39. Wellhausen, R., Seitz, H. Facing current quantification challenges in protein microarrays. Journal of Biomedicine and Biotechnology. 2012, (2012).
  40. Guo, A., Zhu, X. -. Y. The critical role of surface chemistry in protein microarrays. Functional Protein Microarrays in Drug Discovery. , (2007).

Play Video

Diesen Artikel zitieren
Negm, O. H., Hamed, M., Monaghan, T. M. A Protein Microarray Assay for Serological Determination of Antigen-specific Antibody Responses Following Clostridium difficile Infection. J. Vis. Exp. (136), e57399, doi:10.3791/57399 (2018).

View Video