Este protocolo analisa comportamento de navegação de larvas de Drosophila em resposta à estimulação optogenetic simultânea de seus neurônios olfativos. Luz de comprimento de onda de 630 nm é usada para ativar individuais neurônios olfativos expressando uma rodopsina canal avermelhado. Larval movimento simultaneamente é controlado digitalmente gravado e analisados utilizando o software personalizados.
A capacidade de insetos para navegar em direção a fontes de odor baseia-se as atividades de seus neurônios olfactory do receptor de primeira ordem (ORNs). Gerou-se uma quantidade considerável de informações sobre ORN respostas a odorantes, o papel de ORNs específicas na condução de respostas comportamentais permanece mal compreendido. As complicações em análises de comportamento surgem devido a diferentes volatilidades dos odorantes que ativam ORNs individuais, vários ORNs ativados pelo único odorantes e da dificuldade em replicar naturalmente observadas variações temporais em estímulos olfactory usando métodos convencionais de odor-entrega no laboratório. Aqui, descrevemos um protocolo que analisa comportamento larval de Drosophila em resposta à estimulação optogenetic simultânea de suas ORNs. A tecnologia de optogenetic usada aqui permite a especificidade da ativação de ORN e controle preciso de padrões temporais de ativação ORN. Correspondente movimento larval é controlado digitalmente gravado e analisado usando personalizado escrito software. Substituindo a estímulos de odor com estímulos de luz, esse método permite que para um controle mais preciso da ativação de ORN individual a fim de estudar o seu impacto no comportamento larval. Nosso método para estudar o impacto de neurônios de projeção de segunda ordem (PNs) bem como neurônios locais (LNs) no comportamento larval poderia, ser novamente prorrogado. Este método permitirá, assim, uma dissecação completa da função olfativa circuito e complemento estudos sobre atividades de neurônio olfatório como traduzir em respostas de comportamento.
Informação olfativa no ambiente da larva uma drosófila é detetada por apenas 21 ORNs funcionalmente distintos, as atividades de que, finalmente, determinar o comportamento larval1,2,3,4. No entanto, relativamente pouco é conhecido sobre a lógica pela qual informação sensorial é codificada nas atividades destas 21 ORNs. Assim, há uma necessidade de medir experimentalmente as contribuições funcionais de cada ORN larval de comportamento.
Embora o perfil de resposta sensorial do repertório inteiro de Drosophila ORNs larvas tem sido estudado em detalhe1,4,5, as contribuições de ORNs individuais para o circuito olfativo e, desse modo, para comportamento de navegação permanecem em grande parte desconhecidos. Em estudos de comportamento larval, até agora, dificuldades devido à incapacidade de espacial e temporalmente ativar ORNs único. Um painel de odores que ativam especificamente o 19. º as 21 ORNs larvas de Drosophila foi recentemente descrito1. Cada odorante no painel, em baixas concentrações, provoca uma resposta fisiológica apenas a partir de seu cognato ORN. No entanto, em altas concentrações que normalmente são usadas para os ensaios de comportamento convencional, cada odorant elicia respostas fisiológicas de múltiplos ORNs1,5,6. Além disso, odorantes neste painel têm variado volatilidades que complicam a interpretação dos estudos de comportamento que dependem de formação de odor estável gradientes7,8. Finalmente, naturalmente ocorrendo estímulos odor tem um componente temporal que é difícil de replicar em condições de laboratório. Portanto, é importante desenvolver um método que pode medir comportamento larval enquanto simultaneamente ativando ORNs individuais de uma forma espacial e temporal.
Aqui, vamos demonstrar um método que possui vantagens sobre rastreamento larval descrito anteriormente ensaios1,8. O ensaio de rastreamento descrito em Gershow et al usa válvulas eletronicamente controladas para manter um gradiente estável do odor no comportamento arena8. No entanto, devido ao nível de engenharia complexo envolvido para construir o odor estímulo de configuração, esse método é difícil de replicar em outros laboratórios. Além disso, os problemas relacionados ao uso de odorantes para ativar especificamente ORNs único continuam por resolver. O ensaio de rastreamento descrito na Mathew et al usa um sistema de entrega de odor mais simples, mas o gradiente de odor resultante depende da volatilidade do teste odorant e é instável para durações longas do ensaio1. Assim, substituindo a estímulos de odor com estímulos de luz, nosso método tem as vantagens da especificidade e um controle preciso da ativação de ORN temporal e não é dependente da formação de gradientes de odor de diferentes intensidades.
Nosso método é fácil de configurar e é apropriado para pesquisadores interessados em medir aspectos da navegação de larvas de Drosophila . Esta técnica poderia ser adaptada para outros sistemas modelo, desde que o pesquisador é capaz de dirigir a expressão de CsChrimson em neuron(s) seus favoritos do sistema de escolha. CsChrimson é uma versão avermelhado da rodopsina canal. Ele é ativado em comprimentos de onda que são invisíveis ao sistema de phototaxis da larva. Estamos, portanto, capazes de manipular a atividade de neurônios com especificidade, confiabilidade e reprodutibilidade9. Modificando o costume escrito software conta para alterações de tamanho dos indivíduos, esse método poderia ser facilmente adaptado para rastreamento larvas de outras espécies de insetos.
Aqui, descrevemos um método que permite a medição do comportamento larval de Drosophila em resposta à ativação simultânea optogenetic dos neurônios olfativos. Descrito anteriormente larval de rastreamento métodos1,8 usar tecnologia de entrega de odor diferente para ativar ORNs. No entanto, esses métodos não podem controlar para a especificidade ou padrões temporais de ativação ORN. Nosso método supera esses défices usando estímulos de lu…
The authors have nothing to disclose.
Este trabalho foi financiado por fundos de inicialização da Universidade de Nevada, Reno e pelo NIGMS do Instituto Nacional de saúde, sob número de concessão GM103650 P20.
Video camera to capture larval movement | |||
CCD Camera | Edmund Optics | 106215 | |
M52 to M55 Filter Thread Adapter | Edmund Optics | 59-446 | |
2" Square Threaded Filter Holder for Imaging Lenses | Edmund Optics | 59-445 | |
RG-715, 2" Sq. Longpass Filter | Edmund Optics | 46-066 | |
Electronics for optogenetic setup | |||
Raspberry Pi 2B | RASPBERRY-PI.org | RPI2-MODB-V1.2 | |
3 Channel programmable power supply | newegg.com | 9SIA3C62037092 | |
8 Channel optocoupler relay | amazon.com | 6454319 | |
630nm Quad-row LED strip lights | environmentallights.com | red3528-450-reel | |
850nm LED strips | environmentallights.com | wp-4000K-CC5050-60×2-kit | |
Software | |||
Matlab | Mathworks Inc. | ||
Ubuntu MATE v16.04 | Nubuntu | https://github.com/yslo/nubuntu | |
Other items | |||
Plexiglass black acrylic | Home Depot | MC1184848bl | |
Fly food and other reagents | |||
Nutrifly fly food | Genesee Scientific | 66-112 | |
Agarose powder | Genesee Scientific | 20-102 | |
22cm X 22cm square petri-dish | VWR Inc. | 25382-327 | |
DMSO | Sigma-Aldrich | D2650 | |
Sucrose | Sigma-Aldrich | 84097 | |
All trans-retinal | Sigma-Aldrich | R2500 | |
Flies | |||
UAS-IVS-CsChrimson | Bloomington Drosophila Stock Center | 55134 | |
Orco-Gal4 | Bloomington Drosophila Stock Center | 26818 | |
Or42a-Gal4 | Bloomington Drosophila Stock Center | 9970 | |
Or7a-Gal4 | Bloomington Drosophila Stock Center | 23907 |