With the following protocol, we provide an approach to Ventricular Tachycardia (VT) ablation using high density mapping with a multipolar catheter and 3D mapping system enhancing the success of the procedure.
Ventricular tachycardia (VT) in patients with ischemic cardiomyopathy mainly results from endocardial scars after myocardial infarction; those scars represent zones of slow conduction that allow the occurrence and maintenance of reentrant circuits. Catheter ablation enables substrate modification of those low voltage areas and thus can help to alter the scar tissue in such a way that arrhythmias cannot appear anymore. Hospitalizations of concerned patients decrease, quality of life and outcome rise. Consequently, VT ablation represents a growing field in electrophysiology, especially for patients with endocardial scars in ischemic heart disease after myocardial infarction. However, ablation of ventricular tachycardia remains one of the most challenging procedures in the electrophysiology lab. Precise scar definition and localization of abnormal potentials are critical for ablation success. The following manuscript describes the use of a multipolar mapping catheter and 3-dimensional (3D) mapping system to create a high density electro-anatomical map of the left ventricle including a precise scar representation as well as mapping of fractionated and late potentials in order to allow a highly accurate substrate modification.
Coronary artery disease and myocardial infarction remain major causes for morbidity and mortality in the industrialized world1. Myocardial scars after transmural infarction represent low voltage areas and thus zones of slow electrical conduction and facilitate the appearance and maintenance of macro-reentrant circuits. Ventricular tachycardias (VT) are responsible for repeat hospitalizations, painful shocks of implantable cardioverter defibrillators (ICD) and thus lessen quality of life and cause poor outcome2,3. Catheter ablation can reduce the occurrence of VT, especially in ischemic heart disease4, and should be considered in patients with ventricular arrhythmias and underlying structural heart disease in the presence of an ICD (class IIa B recommendation)5. In patients with structural heart disease with ventricular arrhythmias already suffering from ICD shocks, catheter ablation is recommended (class I B recommendation)5. However, catheter ablation is still a high-risk procedure, considering the often-poor state of health of concerned patients with mostly reduced left ventricular ejection fraction and multiple co-morbidities. Furthermore, the precise localization of scars and abnormal potential can be challenging but are critical for ablation success. The use of 3D mapping systems and multipolar catheters allow electro-anatomical high-density mapping and can considerably facilitate the acquisition of electrical information and thus improve the quality and validity of the 3D model and consequently enhance ablation success and patient outcome. So far, there are 3 different 3D mapping systems available, whereof one is commonly used for VT ablation. The following protocol describes an approach to endocardial ischemic VT ablation using a less common 3 D mapping system in the field of VT ablation and a multipolar catheter (see Table of Materials) for high-density electro-anatomical reconstruction.
The use of 3D mapping systems in complex electrophysiological procedures is a well-established method to acquire detailed and precise anatomical information and reduce radiation time and enables the creation of substrate and activation maps9. However, data acquisition can be challenging due to difficult catheter movement, especially in the left ventricle. Furthermore, point by point map acquisition takes a lot of time and thus prolongates the electrophysiological procedure. Wide electrode spacing at the tip of the mapping catheter reduces resolution and quality of the created map, critical signals may be overlooked. The use of a multipolar catheter for mapping of the ventricle solves the above-mentioned issues: several mapping points can be taken simultaneously; procedure time decreases. The narrow-spaced electrodes guarantee a very high resolution of the map, important signals are not so easily missed anymore.
Currently, there are 3 different 3D mapping systems available, all of them allowing the use of multipolar mapping catheters.
So far, one of them using a magnetic field is widely used, especially in VT ablation, due to its user-friendly handling and highly accurate electroanatomical reconstruction. A suitable mapping catheter, a 20-pole steerable catheter with narrow electrode spacing, can access even difficult anatomies due to its special configuration (star shape) and provides precise high density maps10.
A relatively new 3D mapping system also allows a very quick and precise acquisition of multiple mapping points by means of a 64-electrode mapping catheter with a basket shape11,12.
The 3D mapping system used in the protocol (see Table of Materials) combines impedance and magnetic field technology and thus allows precise navigation and accurate tracking of mapping and ablation catheters, either conventional or sensor enabled. The created electro-anatomical maps are highly accurate and don´t need further post-processing compared with former versions of the mapping system. A huge advantage for accurate mapping is the morphology matching feature, which allows continuous comparison of QRS morphologies during map acquisition. The suitable 16-pole mapping catheter (see Table of Materials) allows the acquisition of multiple points simultaneously and makes possible high resolution and the detection of even small critical signals due to its narrow electrode spacing (3-3-3).
To further improve the quality of the map and identify critical potentials, we changed the low voltage range from 0.5-1.5 mV to 0.2-1.5 mV (to identify viable and conducting tissue inside the scar). Interestingly, most late potentials were detected in viable zones within the scar (see Figure 1 and Figure 2).
By pacing from the catheter in the right ventricle, late potentials could clearly be separated from the first ventricular activation (see Figure 4B).
Despite the steerability of the 16-pole mapping catheter, we could not access all regions of the left ventricle. Those sites had to be addressed with the ablation catheter, which also has close electrode spacing (2-2-2), as well as a pressor sensor to guarantee adequate wall contact.
Despite all the above-mentioned advantages, the more sophisticated a method gets, the more prone it is to disturbances. Catheter noise can occur and make the interpretation of signals very difficult. Artifacts can simulate electrically interesting potentials and misguide the investigator. Multipolar catheters require more cables that can be damaged, the connection can be disturbed, troubleshooting costs time.
Despite those disadvantages, multipolar catheters, if used correctly and by experienced investigators, are very useful for complex electrophysiological procedures and have a large potential in the future. Reduction of procedure time helps to prevent adverse events in these often very ill patients. The additional electrical information provided has to be interpreted carefully and along with other parameters available
The authors have nothing to disclose.
None.
NaVX EnSite Precision 3 D mapping system | Saint Jude Medical | ||
EnSite Precision Surface Electrode Kit | St. Jude Medical | EN0020-P | |
Ampere RF Ablation generator | St. Jude Medical | H700494 | |
EP-4, Cardiac Stimulator | St. Jude Medical | EP-4I-4-110 | |
LabSystem PRO EP recording system, v2.4a | Boston Scientific | ||
octapolar diagnostic catheter, EP-XT | Bard | 200797 | electrode spacing 2-10-2 |
supreme quadripolar diagnostic catheter | St. Jude Medical | 401441 | electrode spacing 5-5-5 |
Agilis NxT 8.5F, 71/91 cm steerable sheath, large curl | St. Jude Medical | G408324 | |
BRK transseptal needle, 98 cm | St. Jude Medical | 407206 | |
Advisor HD Grid mapping catheter, sensor enabled | St. Jude Medical | D-AVHD-DF16 | electrode spacing 3-3-3 |
quadripolar irrigated tip ablation catheter, TactiCath SE | St. Jude Medical | A-TCSE-F | electrode spacing 2-2-2 with pressure sensor |
Cool Point pump for irrigated ablation | St. Jude Medical | IBI-89003 | |
Cool Point tubing set | St. Jude Medical | 85785 | |
GEM PCL Plus Instrumentation laboratory | IL Werfen India Pvt. Ltd. | activated clotting time measurement device | |
X-ray equipment | Philips | ||
Heartstart XL defibrillator and associated patches | Philips | ||
12 F Fast-Cath sheath | St. Jude Medical | 406128 | |
6 F sheath | Johnson-Johnson | ||
5 F sheath | Johnson-Johnson | ||
BD Floswitch™ | Becton Dickinson | ||
Isozid®-H gefärbt | Novartis |