Психомоторного развития процессы, такие, как распространение, миграции и neurite нарост часто возмущенных в психоневрологических заболеваний. Таким образом мы представляем протоколы можно воспроизвести и быстро оценить эти процессы нервной в человека iPSC производные РНУ. Эти протоколы позволяют также оценки воздействия соответствующих факторов роста и терапии по развитию NPC.
Развитие человеческого мозга проходит через ряд четко спланированных процессов, с ранних этапов распространения, миграции и neurite нарост; и более поздних стадиях характеризуются аксона/дендритов нарост и синапса формирования. В нервной расстройств часто один или несколько из этих процессов разрушаются, ведущих к аномалии в мозге формирования и функции. С появлением человека индуцированных плюрипотентных стволовых клеток (hiPSC) технологии исследователи теперь имеют в избытке человеческих клеток, которые могут быть дифференцированы в практически любой тип клеток, включая нейронов. Эти клетки могут использоваться для изучения развития нормального мозга и патогенез болезни. Ряд протоколов, с помощью hiPSCs для моделирования использования психоневрологические заболевания неизлечимо продифференцировано нейронов или использование 3D культуры систем называется organoids. Хотя эти методы доказали неоценимое значение в изучении патогенеза заболеваний человека, есть некоторые недостатки. Дифференциация hiPSCs в нейроны и поколения organoids, длительных и дорогостоящих процессов, которые могут повлиять на количество экспериментов и переменных, которые могут быть оценены. Кроме того в то время как после митотическая нейронов и organoids позволяют исследования процессов, связанных с болезнями, включая дендритов нарост и synaptogenesis, они исключают изучения предыдущих процессов как миграции и распространения. В нервной расстройств, таких как аутизм обильные доказательства генетических и посмертные указывает дефекты в начале процессов развития. Клетки-предшественники нейронных (НПС), высокой пролиферативной клеток населения, может быть подходящую модель, в которой задавать вопросы о онтогенетические процессы и начало болезни. Теперь мы расширяем методологий, извлеченные из изучения развития в мышь и крыса корковых культур для человека РНУ. Использование НИПы позволяет нам исследовать связанные с болезнью фенотипы и определить как различные переменные (например, факторы роста, наркотики) воздействия процессов развития включая распространения, миграции и дифференциация лишь через несколько дней. В конечном итоге этот набор может использоваться в духе воспроизводимость и высок объём для выявления механизмов конкретных заболеваний и фенотипы в нервной расстройств.
Использование мыши модели и проще организмов выяснены механизмы развития основных мозга, а также патогенеза болезни. Несмотря на эти достижения этиологию многих психоневрологических расстройств ускользает, потому что не все результаты в более простые организмы имеют непосредственное отношение к сложные аспекты заболеваний человека. Кроме того большую сложность человеческого мозга часто делает его трудным для модели человеческого развития и расстройства в животных. С Эволюция и прогресс человека индуцированных плюрипотентных стволовых клеток (hiPSCs) технологии соматические клетки можно перепрограммировать в стволовые клетки и затем дифференцированной в нейрональные клетки для изучения болезней человека. Достижения в технологии hiPSCs и «omic» (геномика, transcriptomics, протеомики и метаболомики) обещает революционизировать понимание развития человеческого мозга. Эти технологии теперь сделать возможным «точность медицина» подход к характеристике психоневрологических заболеваний на основе case-by-case.
Текущий штапель в поле hiPSC заболевание моделирование является дифференцироваться в определенных нейронов подтипы в монослое клеток или использовать систему 3D культуры под названием органоид резюмировать аспекты мозга развития1,2, 3. Эти системы были невероятно ценным в изучении и расчехлять уникальные аспекты развития человеческого потенциала и болезни4,5,6,7. Однако нейронов культур и organoids часто требуют везде от недель до месяцев в культуре прежде чем они готовы учиться. Трудоемкий характер этих протоколов и количество ресурсов, необходимых для поддержания этих систем культуры часто ограничивают количество экспериментов, которые могут быть выполнены и количество переменных (как факторы роста или наркотиков), которые могут быть проверены. Кроме того многие исследования с использованием пост митотическая нейронов и organoids были сосредоточены на процессы такие как нарост или синапса образования дендритов, которые происходят позже в процессе развития. Хотя эти процессы были причастны к патологии развития расстройств, таких как аутизма и шизофрении, ранее развития события, которые происходят до окончательного нейрональных дифференциация также важны для патогенеза заболеваний8 ,9,10,11,12,13. Действительно недавние геномные исследования показывают, что периода середины плода, который состоит из распространения, процесс нарост и миграции, особенно важное значение в патогенезе аутизм11,14. Таким образом важно изучить нервных стволовых и прародитель клеточных популяций, чтобы лучше понять эти ранее процессов. Органоид систем, которые считаются лучше итог развития человеческого мозга из-за их 3D природа и организованную структуру, содержать прародителя бассейн, который был использован для изучения некоторых из этих более ранних событий. Однако прародитель населения organoids часто является редким и больше как радиальные глиальные клетки чем нервных стволовых и прогениторных клеток5,15. Таким образом было бы полезно иметь высокую пропускную способность метода для изучения ранних стадиях нейроразвития в популяции активно пролиферативной клеток.
В лаборатории, мы создали протокол, использующий hiPSC производные нейронных прекурсоров клетки (НПС), смешанного населения нервных стволовых и прогениторных клеток, что весьма пролиферативная, изучение неврологического процессов, таких как распространение, миграции клеток, и расширение начального процесса (neurite). Эти анализы были разработаны от методов, используемых в нашей лаборатории на протяжении десятилетий успешно учиться нейроразвития крысы и мыши корковых культур16,,1718,19,20, 21,,22–23. Важно отметить, что также было показано, что фенотипы и регулирования сигналов, определенных в системах культуры крысы и мыши очень интеллектуальный механизмов, которые активно в естественных условиях, указывающее значение этих методов16, 17,18,19,24. После первоначального дифференциации hiPSCs с НПС эти методы позволяют нам для изучения жизненно важных процессов развития в считанные дни. Эти методы имеют много преимуществ: (1) они требуют мало сложного оборудования и легко осуществить, (2) многочисленные экспериментальные реплицирует может проводиться в течение короткого времени, позволяя быстрое подтверждение воспроизводимости результатов, и (3) Культура переменных, таких как покрытие матрицы, эффекты факторов роста и активности препаратов могут быть проверены, быстро и экономично. Кроме того мы воспользоваться хорошо созданы роль внеклеточных факторов роста как критические регуляторы различных процессов развития. НПС были подвержены выбрать развития сигналы, которые непосредственно стимулировать такие события, как распространение, neurite нарост и миграции клеток и обнаружили, что они повышают способность выявлять дефекты, которые не проявляются в условиях управления19 , 25 , 26 , 27 , 28. Аналогичным образом, облегчения оценки наркотиков обеспечивает мощный авеню принять точности методов медицины для проверки эффективности различных терапевтических вмешательств. Таким образом этот протокол способствует высокой пропускной способности, воспроизводимость и простой методологии для изучения раннего развития мозга, патогенеза заболевания и потенциальных благотворно факторов роста и наркотиков на фенотипы психомоторного развития.
Здесь представлены протоколы свидетельствуют быстрые и простые методы для изучения фундаментальных неврологического процессов и тестирования факторы роста и наркотиков с использованием клеток hiPSC производные нейронных прекурсоров. hiPSC технология революционизировал изучение патог?…
The authors have nothing to disclose.
Эта работа была поддержана губернатор Нью-Джерси Совета медицинских исследований и лечения аутизм (CAUT13APS010; CAUT14APL031; CAUT15APL041), Нэнси Lurie знаменует Фонд семьи, Mindworks благотворительный фонд свинца и еврейская община фонд более Метроуэст NJ.
PSC Neural Induction Medium: Protocol Link: https://goo.gl/euub7a |
ThermoFischer Scientific | A1647801 | This is a kit that consists of Neurobasal (NB) medium and a 50x Neural Induction Supplement (NIS). The NIS is used to make 1X Neural Induction Medium and 100% Expansion Medium |
Advanced DMEM/F12 Medium | ThermoFischer Scientific | 12634-010 | Component of 100% Expansion Medium |
Neurobasal Medium | ThermoFischer Scientific | 21103049 | Component of both NIM and 100% Expansion Medium |
hESC-qualified Matrigel | Corning | 354277 | hESC-qualified extracellular matrix-mimic gel (ECM-mimic gel) |
Y-27632 (2HCl), 1 mg | Stem Cell Technologies | 72302 | ROCK inhibitor |
6 well plates | Corning | COR-3506 | Polystyrene plates used for NPC maintenance and for Neurosphere Migration Assay |
24 well plates | ThermoFischer Scientific | 2021-05 | Polystyrene plates: Used for NPC DNA Synthesis Assay |
35 mm dishes | ThermoFischer Scientific | 2021-01 | Polystyrene plates: Used for NPC S-Phase Entry and Neurite Assay |
Natural Mouse Laminin | Invitrogen | 23017-015 | Substrate for coating plates: Used for NPC DNA Synthesis, S-Phase Entry, and Cell Number Assays |
Fibronectin | Sigma | F1141 | Substrate for coating plates: Used for Neurite Assay |
Poly-D-Lysine | Sigma | P0899 | Substrate for coating plates |
Penicillin/Streptomycin | ThermoFischer Scientific | 15140122 | Antibiotic, component of NIM, 100% Expansion and 30% Expansion Media |
StemPro Accutase | Gibco | A11105-01 | 1X Cell Detachment Solution |
2.5% Trypsin (10X) | Gibco | 15090-046 | 10X enzymatic solution |
0.5 M EDTA | ThermoFischer Scientific | AM9261 | used in trypsin solution for lifting cells for DNA synthesis assay |
tritiated [3H]-thymidine | PerkinElmer | NET027E001 | Radioactive tritium, thymidine |
Fisherbrand 7 mL HDPE Scintillation Vials | Fisherbrand | 03-337-1 | Vials for liquid scintillation counting |
EcoLite(+) | MP Biomedicals | 0188247501 | Liquid scintillation cocktail |
LS 6500 multi-purpose liquid scintillation counter | Beckman Coulter | 8043-30-1194 | Liquid Scintillation Counter |
Skatron Semi-automactic Cell Harvester Type 11019 | Molecular Devices & Skatron Instruments, Inc. | Semi-automatic cell harvester | |
Click-iT EdU Alexa Fluor® 488 Imaging Kit | ThermoFisher Scientific | C10337 | EdU and staining kit for S-Phase Entry Assay |
Trypan Blue Solution, 0.4% | ThermoFisher Scientific | 15250061 | Assessing viability of cells |
Grade GF/C filter paper | GE Healthcare Life Sciences, Whatman | 1822-849 | Glass fiber filter paper |
Human Basic FGF-2 | Peprotech | 100-18B | growth factor |
Pituitary Adenylate Cyclase Activating Polypeptide (PACAP-38) | BACHEM | H-8430 | neuropeptide |