Eine magnetische Pinzette Einzelmolekül-Plattform, G-Quadruplexe zu manipulieren wird berichtet was ermöglicht das Studium der G4 Stabilität und Verordnung durch verschiedene Proteine.
Nicht-kanonische Nukleinsäure-Sekundärstruktur, die G-Quadruplexe (G4) in verschiedenen zellulären Prozessen, wie DNA-Replikation, Transkription, RNS-Verarbeitung und Telomere Dehnung beteiligt sind. Während dieser Prozesse verschiedener Proteine binden und lösen G4 Strukturen, ihre Funktion auszuführen. Da die Funktion des G4 oft auf die Stabilität der gefaltete Struktur abhängt, ist es wichtig zu untersuchen, wie G4-bindende Proteine regulieren die Stabilität des G4. Dieses Werk stellt eine Methode zum manipulieren G4 Einzelmoleküle magnetischen Pinzette, die Studien über die Regulierung der G4-bindende Proteine auf ein einzelnes Molekül der G4 in Echtzeit ermöglicht. Im Allgemeinen ist diese Methode geeignet für ein breites Spektrum von Anwendungen in Studien für Proteine/Liganden Interaktionen und Vorschriften auf verschiedenen DNA- oder RNA-Sekundärstrukturen.
Vier-Stranded DNA oder RNA G4 Strukturen spielen wichtige Rollen in viele wichtige biologische Prozesse1. Viele Proteine beteiligt sind G4 Bindung und Verordnung, einschließlich der Telomer-bindende Proteine (Telomerase, POT1, RPA, TEBPs, TRF2)1,2, Transkriptionsfaktoren (Nucleolin, PARP1)3, RNA, Proteine (HnRNP A1, Verarbeitung HnRNP A2)4, Helicases (BLM, FANCJ, RHAU, WRN, Dna2, Pif1)5und DNA-Replikation im Zusammenhang mit Proteinen (Rif1, REV1, PrimPolymerase)6. Proteinbindung kann stabilisieren oder destabilisieren G4 Strukturen; so regelt die nachfolgende biologische Funktionen. Die Stabilität des G4 wurde durch thermische schmelzen mit Ultraviolett (UV) oder kreisförmigen Dichroismus (CD) Methoden7gemessen. Solche Bedingungen sind jedoch nicht physiologischen relevant und sind schwierig, die Auswirkungen der verbindlichen Proteine7anzuwenden.
Die rasante Entwicklung im Einzelmolekül-Manipulation Technologien hat Studien von Falten und entfalten von ein Biomolekül, wie eine DNA oder ein Protein Einzelmolekül-Ebene mit Nanometer-Auflösung in Echtzeit8aktiviert. Rasterkraftmikroskopie (AFM), optische Pinzette und magnetischen Pinzette sind die am häufigsten verwendeten Methoden der Einzelmolekül-Manipulation. Im Vergleich zu AFM und optische Pinzette9, ermöglichen magnetischen Pinzette stabile Messungen der Faltung entfaltet Dynamik eines einzelnen Moleküls über Tage mithilfe einer Anti-Drift-Technik10,11.
Hier ist eine Einzelmolekül-Manipulation-Plattform magnetischen Pinzette, um die Regulierung der G4 Stabilität zu studieren, durch die Bindung von Proteinen gemeldeten12,13. Diese Arbeit beschreibt die grundlegenden Ansätze, einschließlich Probe und Flow-Kanal-Vorbereitung, das Setup der magnetischen Pinzette und die Kraft-Kalibrierung. Die Kraftregelung und die Anti-Drift-Protokolle wie beschrieben in Schritt 3 ermöglichen lange Zeitmessungen unter verschiedenen Kraft Steuerelemente, z. B. konstante Kraft (Kraft Klemme) und konstante laden bewerten (Kraft-Rampe) und Kraft-Sprung Messung. Das Kraft-Kalibrierung-Protokoll in Schritt 4 beschriebenen ermöglicht Kraft Kalibrierung des < 1 µm kurze Anbindehaltung über eine große Kraft reichen bis zu 100 pN, mit einem relativen Fehler innerhalb von 10 %. Ein Beispiel für eine Regulierung der Stabilität der RNA-Helikase zugeordnete AU-reiche Element (RHAU) Helikase (Alias DHX36, G4R1), der spielt entscheidende Rolle bei der Lösung, dass RNA G4 verwendet wird, um die Anwendungen von dieser Plattform13demonstrieren.
Einzelmolekül-magnetischen Pinzette wird berichtet, wie beschrieben, eine Plattform für die Untersuchung der mechanischen Stabilität der G4-DNA und die Interaktionen von Proteinen mit G4. Begleiten die Plattform, sind hocheffiziente Protokolle zu finden, G4-DNA Haltegurt und Messung der Faltung entfaltet Dynamik und Stabilität der G4-Struktur mit Nanometer Sonderbeschluss entwickelt. Die Brennebene Verriegelung ermöglicht hochstabile Anti-Drift-Steuerelement, das ist wichtig für die Erkennung eines kleinen Struktur…
The authors have nothing to disclose.
Die Autoren danken Meng Pan für Korrekturlesen Manuskript. Diese Arbeit wird von Singapur Ministerium der Ausbildung akademische Forschung Fonds Stufe 3 (MOE2012-T3-1-001), J.Y unterstützt; der National Research Foundation über das Mechanobiology Institut Singapur, J.Y; der National Research Foundation, des Premierministers Büro, Singapur, unter seinem NRF Investigatorship Programm (NRF Investigatorship Award Nr. 03 / NRFI2016 / NRF, J.Y; die Grundlagenforschung Fonds für den Central-Universitäten (2017KFYXJJ153), H. Y.
DNA PCR primers | IDT | DNA preparations | |
DNA PCR chemicals | NEB | DNA preparations | |
restriction enzyme BstXI | NEB | R0113S | DNA preparations |
coverslips (#1.5, 22*32 mm, and 20*20 mm) | BMH.BIOMEDIA | 72204 | flow channel preparation |
Decon90 | Decon Laboratories Limited | flow channel preparation | |
APTES | Sigma | 440140-500ML | flow channel preparation |
Sulfo-SMCC | ThermoFisher Scientific | 22322 | flow channel preparation |
M-280, paramganetic beads,streptavidin | ThermoFisher Scientific | 11205D | flow channel preparation |
Polybead Amino Microspheres 3.00 μm | Polysciences, Inc | 17145-5 | flow channel preparation |
2-Mercaptoethanol | Sigma | M6250-250ML | flow channel preparation |
Olympus Microscopes IX71 | Olympus | IX71 | Magnetic tweezers setup |
Piezo-Z Stages P-721 | Physik Instrumente | P-721 | Magnetic tweezers setup |
Olympus Objective lense MPLAPON-Oil 100X | Olympus | MPLAPON-Oil 100X | Magnetic tweezers setup |
CCD/CMOS camera | AVT | Pike F-032B | Magnetic tweezers setup |
Translation linear stage | Physik Instrumente | MoCo DC | Magnetic tweezers setup |
LED | Thorlabs | MCWHL | Magnetic tweezers setup |
Cubic Magnets | Supermagnete | Magnetic tweezers setup | |
Labview | National Instruments | Magnetic tweezers setup | |
OriginPro/Matlab | OriginLab/MathWorks | Data analysis |