Science Education
>

Measurement & Analysis of the Temporal Discrimination Threshold Applied to Cervical Dystonia

LEHRERVORBEREITUNG
KONZEPTE
SCHÜLERPROTOKOLL
JoVE Journal
Neurowissenschaften
Author Produced
Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich.  Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
JoVE Journal Neurowissenschaften
Measurement & Analysis of the Temporal Discrimination Threshold Applied to Cervical Dystonia

The Medical Research Ethics Committee at St. Vincent's University Hospital, Dublin gave approval for the recruitment of patients with cervical dystonia, their siblings (unaffected by dystonia), and healthy controls, to participate in the protocol described below.

1. Hardware & Software Solutions

Note: Two hardware options have been developed to display visual stimuli with precise inter-stimulus intervals. Both were designed and built in-house at the Trinity Centre for Bioengineering, Trinity College Dublin, and have been previously described5,16. Those wishing to replicate the exact hardware solutions used herein may request same by contacting the Trinity Centre for Bioengineering directly. Alternatively, a full set of instructions including 3D printing files for the headset, instructions for the accompanying Arduino microcontroller, etc. can be downloaded from http://www.dystoniaresearch.ie/temporal-discrimination-threshold/. The stimuli presented in the table top approach may be generated using custom programs in Presentation (e.g., Neurobehavioural Systems), installed on a desktop computer and programmed to control the light-emitting diodes (LED) via the parallel port of the computer. Alternatively, as described below, the table top LEDs may be controlled via an Arduino microcontroller. Both the Presentation code and Arduino files are also available to download from the above link.

  1. TDT hardware: Table-Top Method
    1. Mark an 'X', as a fixation point, on a black mat or sheet placed on the table in front of the participant.
    2. Ask the participant to position themselves so that they are sitting directly in front of the fixation point.
    3. Place the yellow light-emitting diode (LED) pairs (5 mm diameter, 90 cd/m2 luminance), encased in a box, on the table in front of the participant.
    4. Orient the box such that the LEDs are vertically aligned and positioned 7 ° from the subject's center point on the left and right side, as needed.
    5. Conduct this experiment in a darkened room. A small amount of background luminance may be required to enable the operator to see enough to run the experiment.
    6. Instruct the participant to focus on the fixation point at all times and not to look directly at the flashing LEDs.
    7. Connect the microcontroller to the LED box and follow the on-screen instructions displayed on the liquid crystal display of the microcontroller box, e.g., select presentation method: 'random' or 'staircase', and select mode: 'left top first', etc.
    8. Ask the participant to respond "same" or "different" following presentation of each stimulus pair, depending on whether they perceive the stimuli to be synchronous or asynchronous.
    9. Inform the participant when each trial is about to commence, by vocalizing the on-screen countdown from 5 – 0 s.

Figure 1
Figure 1: (a) Schematic of the design of the headset. A pair of yellow LEDs (5 mm diameter),and the red fixation LED (3 mm diameter), are placed on the left and right side of the participant via a head-mounted unit and made visible by way of reflection in the mirrors in front of the user. (b) Schematic 3D model of the headset. The headset was developed from laser-sintered nylon plastic, weighs 0.70 kg, has a low transparency index and is black in color to minimize light penetrance. (a and b) are reproduced, with slight modification, from Butler et al.16 with permission from IOP Publishing. (c) The LED stimulus box for table-top presentation.

  1. TDT Hardware: Portable TDT Headset
    1. Conduct the experiment in any suitable location.
    2. Connect the microcontroller to the headset and follow the on-screen instructions displayed on the liquid crystal display of the microcontroller box, e.g., select presentation method: 'random' or 'staircase', and mode: 'left top first', etc.
    3. Direct the participant to position themselves with their elbows on a table in front of them. Then, holding the device in their hands, direct them to gently press their face into the rubber sealant surrounding the eyepiece, thereby sealing out ambient light.
    4. Instruct the participant to focus on the red fixation LED at all times and not to look directly at the flashing LEDs.
    5. Ask the participant to respond "same" or "different" following presentation of each stimulus pair, depending on whether they perceive the stimuli to be synchronous or asynchronous.
    6. Inform the participant when each trial is about to commence, by vocalizing the on-screen countdown from 5 – 0 s.

2. Stimulus Presentation

Note: Two approaches to stimulus presentation have been employed.

  1. Staircase method
    1. Select 'staircase' presentation; stimuli are presented every 5 s with the inter-stimulus interval starting at 0 and becoming progressively more asynchronous (increasing by 5 ms) each time.
    2. Select any of the four presentation modalities: (i) left top LED first (ii) left bottom LED first (iii) right top LED first, or (iv) right bottom LED first.
    3. Repeat step 2.1.2 so that each modality is run twice, resulting in a total of eight runs.
    4. Terminate the trial when a participant responds "different" for three consecutive pairs of stimuli.
  2. Random Presentation Method
    1. Select 'Random' presentation; stimuli pairs are presented every 5 s. The inter-stimulus interval varies, in a randomized fashion, from 0-100 ms.
    2. Select any of the four presentation modalities: (i) left top LED first (ii) left bottom LED first (iii) right top LED first, or (iv) right bottom LED first.
    3. Repeat step 2.2.2 so that each modality is run twice, resulting in a total of eight runs.
      Note: Each run is the same length and will complete automatically.

3. Data Analysis

  1. Single TDT value
    1. Using the data from the staircase method, highlight the first of the final three "different" responses for each of the eight runs. These are the threshold values for each run.
    2. Calculate the temporal discrimination threshold (TDT) for each participant by taking the median of the thresholds from each of their eight runs; resulting in a single TDT value (in milliseconds) per individual.
    3. Calculate the Zscore for each participant. Define the Zscore as the difference between the participant's TDT, and the mean TDT from an age-matched control population (Equaiton 1, divided by the standard deviation of the TDT values for that control population Equaiton 2.
      Equaiton 3
    4. Determine if the individual has a normal or abnormal TDT. A Zscore ≥ 2.5 is deemed to reflect an abnormal TDT.
  2. Distribution Analysis
    1. Using the data from the staircase method, encode the response data such that '0' corresponds to "same" and '1' corresponds to "different", Table 1.
    2. Download a free MATLAB.exe to perform the distribution analysis described below from http://www.dystoniaresearch.ie/temporal-discrimination-threshold/. See Butler et al.16 for a full description of this method. Alternatively, proceed as described below.
    3. Pad out the data to ensure all runs are the same length as the longest run. This is done by assuming all subsequent responses, following termination of a run, are "different", Table 1(b).
    4. Average responses across trials for each participant, Table 1(c). This can be plotted as a function of stimulus asynchrony.
    5. Fit this averaged or representative data with a cumulative Gaussian function. The mean of this distribution represents the point at which participants are equally likely to respond “same” or “different”. This point is referred to as the ‘point of subjective equality’ (PSE). The standard deviation of the Gaussian distribution, also referred to as the ‘just noticeable difference’ (JND), indicates how sensitive participants are to changes in temporal asynchrony around their mean.
    6. Extend the analysis by submitting the data to a non-parametric bootstrapping procedure in order to estimate the 95% confidence intervals for the TDT and the PSE and JND of the psychometric, cumulative Gaussian function. To do this, generate new representative data sets by random sampling with replacement from the original responses, Table 1(b), for each time step. Calculate the TDT and fit a new psychometric function for each representative data set16.
    7. Calculate the goodness of fit, or deviance (D), for each participant using the log-likelihood ratio,16,17
      Equaiton 4
      where K is the number of time points, ni is the number of repetitions at that time point, generally eight repetitions (four right and four left), yi is the observed proportion of asynchronous responses, pi is the proportion of asynchronous responses predicted by the fitted curve. A deviance value of 0 means a perfect fit.
    8. Plot the results.
      Note: Data from the random presentation approach can be analyzed to determine the single or distributed TDT as described in section 3 above for data arising from the staircase presentation method. However, due to the random presentation order of inter-stimuli intervals, these data must first be ordered (from smallest to largest inter-stimulus interval), prior to commencing the analysis described above, Table 2. In addition, it is not necessary to pad the data following random presentation as, by default, all runs are of equal length.

Measurement & Analysis of the Temporal Discrimination Threshold Applied to Cervical Dystonia

Learning Objectives

Examples of filled score sheets are provided in Tables 1 and 2, where these respectively represent results following staircase and random stimulus presentation methods. The thresholds for each run (the timing of the first of three stimulus pairs deemed to be 'different'), are highlighted. In the case of Table 1, the TDT is calculated as 25 ms (i.e., the median of 40, 25, 25, 25, 45, 25, 40, 10 ms). These data are taken from a 35 year old woman who participated in a previous study18. The mean and standard deviation for TDT values from women in this age bracket were 27.48 ms and 10.86 ms, respectively. Therefore the Z-score for this individual can be calculated as:
Equaiton 5

As this Zscore is below 2.5, this individual has a normal TDT.

Responses from the same individual following random stimulus presentation are shown in Table 2. Ordering these data is an important step prior to continuing with analysis.

Distribution Analysis

Key stages in the distribution analysis are illustrated in Table 1 (data padding and response averaging) and Figure 2. The sample data used in this analysis is from the same subject as that discussed above and shown in Tables 1 and 2. The plots in Figure 2 are generated from the downloadable MATLAB.exe file. The left side shows the observed data, the cumulative Gaussian functions fitted to the bootstrapped data (following 2000 iterations), and the average cumulative Gaussian function. The goodness of fit measure is illustrated on the right-hand side. Also shown are the temporal discrimination thresholds, the fit parameters, the point of subjective equality (PSE), and just noticeable difference (JND) values. The right side shows goodness of fit measure the log likelihood ratio (deviance) for the observed data (red horizontal line) and the Monte-Carlo generated log likelihood ratio distribution and the 95% confidence intervals (dashed horizontal lines).

The same MATLAB executable exports the TDT, PSE and JND values and bootstrapped cut-offs of 2.5%, 25%, 50%, 75% and 97.5% confidence intervals as well as the goodness of fit or deviance and cutoffs to an excel file. Table 3 provides the outputs generated for the data in Tables 1 and 2. By way of comparison, the TDT values for staircase and random stimulus presentation methods, obtained by the standard method (median of the 8 thresholds), are 25 ms and 50 ms respectively; whereas Table 3 provides the TDT values obtained following bootstrapping of the data. These are 23.75 ms and 48.75 ms respectively.

Figure 2
Figure 2: The left-hand column shows the cumulative Gaussian Distributions for (a) results following the staircase method of stimulus presentation, and (b) the random method of stimulus presentation. The black dots show the original data (the proportion of perceived 'different' responses as a function of inter-stimulus interval, or temporal asynchrony). The light grey curves represent the 2000 Gaussian functions that were fitted to the bootstrapped data. The dark grey curve represents the average cumulative Gaussian function. Values for the Point of Subjective Equality (PSE) (mean) and Just Noticeable Difference (JND) (standard deviation) and the TDT value, calculated from the full distribution are detailed in Table 3. Please click here to view a larger version of this figure.

Table 1
Table 1: Sample data following staircase presentation method, with inter-stimulus intervals (ISI) increasing by 5 ms each time. (a) Data shown for each of the two conditions (top LED first x2, and bottom LED first x2) for the right- and left-hand sides, giving a total of eight runs. 's' represents a response of 'same', and 'd', 'different'. The time intervals used to calculate the TDT are the ISI's corresponding to the first of three consecutive 'different' responses. Therefore, the TDT= 25 ms, the median of 40, 25, 25, 25, 45, 25, 40, and 10. (b) The same data as shown in (a), but encoded such that a '0' represents a response of 'same', and '1' represents 'different'. Data padding (to the longest run) is illustrated. This is a pre-processing step prior to applying the distribution analysis. (c) Averaged responses for each ISI. Note these values are used to generate the psychometric distribution and are plotted in Figure 2.

Table 1
Table 2: Responses from the same participant as Table 1, this time stimuli are presented with randomized inter-stimulus intervals (ISI). (a) Data for the two conditions on the right-hand side (top LED first x2 and bottom LED first x2). For compactness, the data from the left-hand side are not shown here. However, all eight runs are used in all analysis. (b) The same data sorted by incrementing ISI. The threshold for each of the four right-hand side runs are indicated with dashed boxes.

Table 1
Table 3: Summary of Gaussian distribution and Goodness of Fit analysis for the results from the staircase presentation method shown in Table 1, and random presentation method shown in Table 2 (all data for this participant, e.g. total of eight runs (4 left and 4 right) have been used in above analysis). Point of subjective equality, PSE; just noticeable difference, JND; temporal discrimination, TDT; Goodness of Fit, GoF.

List of Materials

TDT head set Can be supplied by Trinity Centre for Bioengineering, Trinity College Dublin.  Alternatively full instructions are available for free download from http://www.dystoniaresearch.ie/temporal-discrimination-threshold/ 1 A custom-built, portable device for the presentation of visual stimuli.
TDT table top LED box Can be supplied by Trinity Centre for Bioengineering, Trinity College Dublin.  Alternatively full instructions are available for free download from http://www.dystoniaresearch.ie/temporal-discrimination-threshold/ 2 A custom-built, table-top device for the presentation of visual stimuli.
Microcontroller Can be supplied by Trinity Centre for Bioengineering, Trinity College Dublin.  Alternatively full instructions are available for free download from http://www.dystoniaresearch.ie/temporal-discrimination-threshold/ 3 A custom-built microcontroller for the delivery of visual stimuli in staircase or random order, with precise inter-stimulus intervals.

Lab Prep

The temporal discrimination threshold (TDT) is the shortest time interval at which an observer can discriminate two sequential stimuli as being asynchronous (typically 30-50 ms). It has been shown to be abnormal (prolonged) in neurological disorders, including cervical dystonia, a phenotype of adult onset idiopathic isolated focal dystonia. The TDT is a quantitative measure of the ability to perceive rapid changes in the environment and is considered indicative of the behavior of the visual neurons in the superior colliculus, a key node in covert attentional orienting. This article sets out methods for measuring the TDT (including two hardware options and two modes of stimuli presentation). We also explore two approaches of data analysis and TDT calculation. The application of the assessment of temporal discrimination to the understanding of the pathogenesis of cervical dystonia and adult onset idiopathic isolated focal dystonia is also discussed.

The temporal discrimination threshold (TDT) is the shortest time interval at which an observer can discriminate two sequential stimuli as being asynchronous (typically 30-50 ms). It has been shown to be abnormal (prolonged) in neurological disorders, including cervical dystonia, a phenotype of adult onset idiopathic isolated focal dystonia. The TDT is a quantitative measure of the ability to perceive rapid changes in the environment and is considered indicative of the behavior of the visual neurons in the superior colliculus, a key node in covert attentional orienting. This article sets out methods for measuring the TDT (including two hardware options and two modes of stimuli presentation). We also explore two approaches of data analysis and TDT calculation. The application of the assessment of temporal discrimination to the understanding of the pathogenesis of cervical dystonia and adult onset idiopathic isolated focal dystonia is also discussed.

Verfahren

The temporal discrimination threshold (TDT) is the shortest time interval at which an observer can discriminate two sequential stimuli as being asynchronous (typically 30-50 ms). It has been shown to be abnormal (prolonged) in neurological disorders, including cervical dystonia, a phenotype of adult onset idiopathic isolated focal dystonia. The TDT is a quantitative measure of the ability to perceive rapid changes in the environment and is considered indicative of the behavior of the visual neurons in the superior colliculus, a key node in covert attentional orienting. This article sets out methods for measuring the TDT (including two hardware options and two modes of stimuli presentation). We also explore two approaches of data analysis and TDT calculation. The application of the assessment of temporal discrimination to the understanding of the pathogenesis of cervical dystonia and adult onset idiopathic isolated focal dystonia is also discussed.

Tags