ソフトウェア ベースの後処理に続いてタイムラプス ビデオ顕微鏡による神経の人口を監視するための堅牢なプロトコルを説明します。このメソッドは、ライブ イメージング実験中に選択した人口の生物学イベントを識別するために強力なツールを表します。
細胞の運命決定や分化、増殖などの神経細胞集団の重要な生命現象を制御するメカニズムを理解することは、神経系に影響を与える多くの病気のためデザイン治療戦略に重要になります。静止画で彼らの最終的な成果に依存して細胞集団を追跡する現在の方法と、彼らは通常単一細胞における行動特性を識別するために十分な時間分解能を提供するために失敗します。また、細胞死における変化、細胞集団、希釈、拡散、または細胞を分析するために使用するマーカーの効率が低い内行動の多様性の結果の不完全か不正確な読み出しにつながるすべての重要なハンディキャップであります。逆に、ライブ イメージングおよび単一細胞を適切な条件の下で追跡を実行する各イベントを監視するための強力なツールを表します。ここでは、後処理、続いてタイムラプス ビデオ顕微鏡検査プロトコルは、単一セルの解像度、特定のソフトウェアを用いた神経集団の追跡に記載されます。説明されている方法では、異なる神経集団の細胞生物学と系統の進行に関する本質的な質問に対処するための研究を有効にします。
神経集団を再生成する新しいより効果的な治療戦略を開発するために我々 は最初再生神経の細胞を維持する基本的なメカニズムを理解する必要があります。この目標を追求して、静穏化、増殖・分化、モード部門、細胞周期の長さ、移動能力、生存率などのタイミングとバランスを調節する因子の包括的な知識が必要です。それは多くの年1に採用されている技術的なアプローチが、イメージングのライブし、直接観察のまま上記イベントを監視する最良の選択肢。終点の読み出しを中心とした多くの他のアプローチに反対のライブ ・ イメージングと単一細胞を追跡、実験2,3,4,5,の長さ全体にわたって情報を提供6。 したがって、と同様、多くの重要なイベントを識別するそれ以外の場合に渡すことがあります一時的な解像度の追加により、細胞死、異種細胞動作、または細胞運命決定、見過ごされました。理想的には、細胞のこれらの機能は最高で、単一細胞レベルで生体内では、監視する必要が場所両方組み込み (細胞自律的に) と外因性 (細胞ニッチ) キューが考慮されます。
ただし、体外のの状況は自然の環境を再現できない環境で生じるが、通常これらのプロトコルで使用される低密度の培養条件はの本質的な特性を明らかにするより適している、セルです。また、成長媒体を変更するだけで、周囲の環境のより単純なコントロールは、それぞれの神経のニッチを定義する外的要因だけでなく、可能性があります環境の要因の個々 の役割を調査するための貴重なツールを構成するかもしれない病理学的シナリオ7,8,9,10、11,12,13で誘導します。したがって、ここで、提案されたプロトコルのように正しく構成されているライブ イメージングは先に挙げた質問のほとんどに対応する実行可能な体外ソリューションを提供します。
簡単に言えば、このプロトコルでは、ハードウェア、ソフトウェア、培養条件および追跡 1 つのセルに続いてライブ イメージング実験を正常に実行するために必要な主な手順について説明します。このアプローチでは、生物学と複数の神経集団の系統進行の基本的な側面を明らかにするために役立つ貴重な情報を提供しています。
ライブ イメージングの最も重要な値の 1 つは、ニューロン集団の系統進行の重要な側面を解明、正確な血統で、トレースを実行する可能性です。トレースする血統は id として定義され、それ以降のクローンにクローンの創始者から21を形成する 1 つの祖先のすべての子孫の監視します。驚くことに、トレース (例えば、ウイルス伝達または多色記者構造21) 系統の代替手法があるという最終的な結果はまだ写真に基づいており、それは必ずしも重大な問題点シーケンス全体を構成します。つまり、その細胞死、細胞集団、希釈、拡散または貧しいマーカーは、一緒に他の重要なハンディキャップの効率の動作における不均一性、結果2の不完全か不正確な読み出しに 。さらに、ライブ イメージングにより、モードや細胞分裂、細胞の成長、移行、増殖と分化、細胞周期の長さ、神経突起のタイミングなどの神経集団の生物学の重要な機能を分析する研究者形成、複雑さと長さ、細胞運命の選択 (差別化)、または変換 (初期化)。
さらに、ライブ イメージングが簡単に他の分析などのように単一のセルからデータを取得するためのもので補完できる RNA シーケンス。ただし、複合ライブ イメージングおよび他の技術の恩恵を達成するために以前に映画で監視されてそれらの細胞が後で再度識別されるされ、個別に収集し、二次分析が必要です。これは、特定のセルの蛍光レポーターを適用または参照としてセルのグループの分布を解析して位置座標を含める顕微鏡を使用して実現できます。実際には、トランスクリプトームのプロファイルの組み合わせと個々 の細胞の挙動細胞の生物学に関与する新しい分子手掛かりを解明するための有力な道筋があります。
ライブ イメージング実験を危険にさらすことができる主要な問題の 1 つは、不十分なセル文化です。前述のように、高密度で破片や貧しい解離 (塊形成) の過剰があります品質と単一細胞を追跡を不可能に作る画像の空間分解能。したがって、調査の下で異なる細胞集団の条件は、培養細胞の生存率を損なうことがなく可能なセルの最小数に調整必要があります。
画像取得の頻度はまた重要調整してください慎重に、特に蛍光照明を使用する場合。とびに送信および、特に蛍光光細胞生存率が低下する可能性があります。また、解析の時間分解能画像のキャプチャ間隔の過剰があります。
ライブ イメージング実験中にもう一つの重要なステップは、焦点の定期的な調整です。正しい設定/再-設定焦点距離の障害は、単一セルの追跡を妨げる可能性があります。また、培養室を維持適切な温度・湿度・ CO2レベル、細胞死を誘導することが望ましくない変化を改正することを慎重に確認する必要です。
最後に、PICC を実行すると、画像取得の最後のラウンドの前に xyz ゼロ位置を正しく取得することが重要です。不適切な再設定、xyz のゼロの位置と、細胞の子孫の識別を妨げる、位相差顕微鏡および蛍光画像と一致することは困難になるそれがあります。
このアプローチには、多くの肯定的な面がありますが、神経集団のライブ イメージングにいくつかの制限はまだ保持されます。例えば、aNSCs の成功した単一細胞追跡を実行するために必要な低細胞密度の場合、ウエスタンブロット14などの生化学的アッセイを採用することは不可能になります。また、小脳アストロ サイトのような高速集団に分割を監視したり N2a 細胞は一時的制限、それはしばしば合流点近く文化として細胞を追跡するは難しい。さらに、細胞の分離に関連付けられている固有の生物学的制限と同様、多くの培養法はしばしば妥協して細胞長期間にわたってライブ イメージング実験の期間を制限すること。最後に、正と負の効果を持って、自然の環境から細胞を分離します。細胞の生理学的なニッチから分離されたが、彼らの行動を調節する重要な信号を受信する失敗する一方、同時に、特定の神経の系統の進行で個別にそれらの信号の効果をテストする強力な手段を表す集団。
上述の制限を考えると、完璧な方法論的シナリオが通常の生理学的な条件の vivoの下ライブ イメージングおよび単一の細胞追跡実験を行うことが明らかです。ただし、現在の技術は2脳の深い地域で時間の長い期間の単一のセルに従うことができません。したがって、ライブ イメージングの未来生理環境3のほとんどのマイナーな干渉可能な限り単一細胞体内の細胞生物学を完全に分析することを目指して、このような制限を克服するのに焦点を当てる必要があります。
The authors have nothing to disclose.
図 1の彼女の援助と芸術作品ありがとうベアトリス「ガスコン」。また、博士 C. ノリスは彼の援助に感謝我々。ここで紹介する作業は研究助成金、「赤デ excelencia Consolider インジェニオ スペイン語イオン チャンネル ・ イニシアチブ」によって支えられた (BFU2015 70067REDC)、フンダシオン ラモン UCM-サンタンデール (PR26/16-18 b とウォールストリート-3)、スムーザー CM (S2013/氷-2958) メック (BFU2014 53654 P)Areces 助成プログラム (PR2018/16-02)。フェリペ ・ オルテガは Ramon y カハール スペイン経済省と競争力のプログラムを認めている (MEC: RYC 2013 13290)。
Poly-D-lysine | Sigma | P0899 | Working solution 0.02 mg mL-1 |
24 wells plate | Falcon | 352047 | |
Dulbecco’s modified Eagle’s medium (DMEM): F12 Nutrient Mixture medium (-L Glutamine) | Invitrogen | 21331-020 | |
DMEM High Glucose medium | Sigma | D6546 | |
Bovine Serum Albumin | Sigma | A6003 | |
Triton X-100 | Merck | 11869 | non-ionic surfactant |
Mouse anti-β III Tubulin | Sigma | T8660 | |
Rabbit anti-GFAP | DakoCytomation | Z0334 | |
Mouse anti-α Tubulin | Sigma | T5168 | |
Anti-Mouse FITC | Jackson Laboratories | 715-095-150 | |
Anti-Rabbit Cy3 | Jackson Laboratories | 711-165-152 | |
Brightfield/Phase contrast/fluoresence microscope | Nikon | TE-2000-E | |
CFI PLAN FLUOR DLLL 10X objetives | Nikon | Ref 280MRH10101 | |
CFI SUPER PLAN FLUOR ELWD AMD 20X objetives | Nikon | Ref 280MRH48230 | |
pE-300 LED fluorescence | Cool LED | Ref Number 1981 | |
310M-201 Incubation system (temperature) | OKO-Lab | Serial Nº VOF007307 | |
Pro-ScanII Motorized stage system | Prior | Serial Nº 60018 | |
High precision microscope camera version 4.2 | ANDOR Zyla | VSC-03650 | |
Specifc software for live imaging with timelapse module: NIS-Elements AR4.5 | Nikon | NIS-Elements AR4.5 -Hasp ID: 13CE819E | |
OKO touch Incubation system (CO2) | OKO-lab | Serial number 1716 | |
Murine Neuro-2a Neuroblastoma Cell line | ATCC | ATCCCCL131 | |
HEPES buffer solution 1 M | Invitrogen | 15630-056 |