Summary

无异条件下多原代羊水和膜细胞重新编程

Published: November 27, 2017
doi:

Summary

该协议描述了在完全化学定义的条件下, 使用 non-integrating episomal 方法将原代羊水和膜间充质干细胞重新编程为诱导多能干细胞。详细介绍了通过严格的方法提取、培养、重新编程和表征所产生的诱导多能干细胞的过程。

Abstract

随着诱导多能干细胞的引入, 自体细胞疗法在现实中得到了更进一步的研究。胚胎干细胞, 如羊水和膜间充质干细胞, 代表了一种独特的组织工程中的未分化细胞, 并为未来的儿科干预和干细胞银行重组为 iPSC。这里介绍的协议描述了一个优化的过程, 以提取和培养初级羊水和膜间充质干细胞和产生 episomal 诱导多能干细胞从这些细胞在完全化学定义的文化利用人类重组受精和 E8 培养基的条件。本文还描述了采用严格的方法-流式细胞仪、共聚焦成像、畸胎瘤形成和转录分析-的新品系的特性。新生成的 Oct3/4A、Nanog、Sox2、TRA-1-60、TRA-1-81、SSEA-4 等胚胎干细胞的标记, 同时对 SSEA-1 标记呈阴性。干细胞系形成畸胎瘤在免疫缺陷-米色小鼠6-8 周和畸胎瘤包含组织代表的所有三种细菌层。通过将全球表达微阵列数据提交到生物多评估算法中的线转录分析认为所有的线多能性, 因此, 这种方法是一个诱人的替代动物试验。新的 iPSC 线可以很容易地用于下游实验, 涉及优化分化和组织工程。

Introduction

诱导多能干细胞技术 (iPSC) 带来了潜在的细胞置换疗法, 疾病和发育模型, 药物和毒理学筛选1,2,3。在概念上可以通过细胞注射、体外分化组织 (如心脏贴片) 或通过组织工程进行引导再生来实现替代疗法。羊水 (AFSC) 和膜干细胞 (AMSC) 是一种极好的细胞源, 这些干预措施要么直接4,5,6,7 ,要么作为重新编程的起始单元格填充进入多8,9,10,11,12

早期的方法使用未定义的区域性系统或重新编程的方法, 需要构建9101112。最近的一项研究采用了无异的培养基, 即使使用了较不明确的基底膜附着基质 (钢), 从羊水上皮细胞中生成 iPSC。然而, 畸胎瘤的形成方法并没有包括在研究中, 以及大量的体外和分子数据。羊水上皮细胞与新生儿成纤维细胞的13相比, 具有大约8倍的高重编程效率。在另一项研究中, 羊水中的间充质干细胞也被发现被重新编程成 iPSC, 效率更高12

多能干细胞可以分化为所有3种细菌层的组织代表, 因此具有最广泛的潜能。儿科患者可以受益于他们的自体羊水干细胞产前和羊膜干细胞产期的收获, 重新编程和组织工程。此外, 相对较低的胚胎干细胞分化水平 (低于成人干细胞14,15) 可以从理论上帮助解决从 iPSC16中的源细胞观察到的表观遗传偏见的保留。

在这里, 我们提出了一个协议, 以重新编程羊水和膜干细胞多在化学定义的无异 E8 培养基上的重组受精17 (VTN) 使用 episomal 质粒18。羊水和膜细胞作为细胞重新编程的主要优势在于它们的可用性和产期, 因此这种方法主要有利于儿科组织工程的研究。

Protocol

该议定书遵循人类研究道德委员会的机构准则。病人的书面同意获得了使用羊水进行研究。 该议定书遵循南阿拉巴马大学机构动物保育和使用委员会的政策。 1. 原代羊膜间充质干细胞的分离培养 羊膜液细胞的电镀 在医生的羊膜穿刺过程中获得至少2.5 毫升的羊水。注: 所有活细胞和组织的处理必须在无菌组织培养柜中进行,…

Representative Results

在为遗传学测试目的采集羊水之前, 患者获得了知情的书面同意, 并为研究提供了一小分。由于胎盘代表医疗废物, 在研究中使用羊膜是不需要同意的。羊水和膜干细胞表现出典型的间质性, 其细胞形态呈纺锤形, 相亮。在重新编程时, 细胞经历 mesenchymal-to-epithelial (MET) 过渡, 并获得鹅卵石样的形态学和空间组织的殖民地, 表明上皮的性质。这一过程是启动早在 48-72 h 后引进重…

Discussion

胚胎干细胞 iPSC 生成的初始阶段需要从胎儿组织中提取源细胞, 它们的培养、扩展和 episomal 重编程质粒的引入。在第一个完全重新编程的殖民地可以扩展之前, 这一阶段的文化周期大约14-18 天。最后阶段是 iPSC 无性系的成熟。羊膜干细胞的初步提取是通过羊膜的联合机械和酶消化的方法来实现的。我们发现, 潜伏期为30分钟, 产生的细胞数量最多, 提取的存活率最高。消化过程可以产生小块的组织和…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了全 Medizinische Forschung 在苏黎世大学的 Forschungskredit, 苏黎世大学, absciex NMSCh在研究金10.216 和 12.176, 瑞士国立心脏病学会, 瑞士国家科学依据授予 [320030-122273] 并且 [310030-143992], 第七框架节目, 生活阀门, 欧共体根据授予 [242008], 奥尔加 Mayenfisch 基础, EMDO 基础, 启动的津贴2012大学医院苏黎世和米切尔癌症研究所的内部资金。

Materials

Tumor Dissociation Kit, human Miltenyi Biotec 130-095-929 tissue dissociation system, reagent kit, includes tissue dissociation tubes and tissue dissociation enzymes
gentleMACS Dissociator Miltenyi Biotec 130-093-235 tissue dissociation system, dissociator
Thermo Scientific™ Shandon™ Disposable Scalpel No. 10, Sterile, Individually Wrapped, 5.75 (14.6cm) Thermo-Fisher 3120032
70 µm cell strainers Corning 10054-456
RPMI 1640 medium Thermo-Fisher 32404014 
rocking platform VWR 40000-300
50 ml centrifuge tubes Thermo-Fisher 339652
15 ml centrifuge tubes Thermo-Fisher 339650
EBM-2 basal medium Lonza CC-3156 basal medium for AFMC medium
FGF 2 Human (expressed in E. coli, non-glycosylated) Prospec Bio CYT-218 bFGF, supplement for AFMC medium
EGF Human, Pichia Prospec Bio CYT-332  EGF, supplement for AFMC medium
LR3 Insulin Like Growth Factor-1 Human Recombinant Prospec Bio CYT-022 IGF, supplement for AFMC medium
Fetal Bovine Serum, embryonic stem cell-qualified Thermo-Fisher 10439024 FBS
Antibiotic-Antimycotic (100X) Thermo-Fisher 15240062  for primary AFSC/AMSC, for routine AFSC/AMSC it should not be necessary, do not use in medium for transfected cells!
Accutase cell detachment solution StemCell Technologies 07920 cell detachment enzyme
CryoStor™ CS10 StemCell Technologies 07930 complete freezing medium
PBS, pH 7.4 Thermo-Fisher Scientific 10010023 
EndoFree Plasmid Maxi Kit (10) Qiagen 12362 for plasmid isolation
pEP4 E02S EN2K Addgene 20925 EN2K, reprogramming factors Oct4+Sox2, Nanog+Klf4
pEP4 E02S ET2K Addgene 20927 ET2K, reprogramming factors Oct4+Sox2, SV40LT+Klf4
pCEP4-M2L Addgene 20926 M2L, reprogramming factors c-Myc+LIN28
NanoDrop 2000c UV-Vis Spectrophotometer Thermo-Fisher ND-2000C spectrophotometer
Neon® Transfection System Thermo-Fisher MPK5000 transfection system, components:
Neon pipette – transfection pipette
Neon device – transfection device
Neon® Transfection System 10 µL Kit Thermo-Fisher MPK1025 consumables kit for the Neon Transfection System, it contains:
Neon tip – transfection tip
Neon tube – transfection tube
buffer R – resuspension buffer
buffer E – electrolytic buffer
Stemolecule™ Sodium Butyrate StemGent 04-0005 small molecule enhancer of reprogramming
TeSR-E8 StemCell Technologies 05940 E8 medium
Vitronectin XF™ StemCell Technologies 07180 VTN, stock concentration 250 µg/ml, used for coating at 1 µg/cm2 in vitronectin dilution (CellAdhere) buffer
CellAdhere™ Dilution Buffer StemCell Technologies 07183 vitronectin dilution buffer
UltraPure™ 0.5M EDTA, pH 8.0 Thermo-Fisher 15575020 dilute with PBS to 0.5 mM before use
EVOS® FL Imaging System Thermo-Fisher Scientific AMF4300 LCD imaging microscope system
CKX53 Inverted Microscope Olympus phase contrast cell culture microscope
Pierce™ 16% Formaldehyde (w/v), Methanol-free Thermo-Fisher 28908 dilute to 4% with PBS before use, diluted can be stored at 2-8 °C for 1 week
Perm Buffer III BD Biosciences 558050 permeabilization buffer, chill to -20 °C before use
Mouse IgG1, κ Isotype Control, Alexa Fluor® 488 BD Biosciences 557782 isotype control for Oct3/4A, Nanog
Mouse IgG1, κ Isotype Control, Alexa Fluor® 647 BD Biosciences 557783 isotype control for Sox2
Mouse anti-human Oct3/4 (Human Isoform A), Alexa Fluor® 488 BD Biosciences 561628
Mouse anti-human Nanog, Alexa Fluor® 488 BD Biosciences 560791
Mouse anti-human Sox-2, Alexa Fluor® 647 BD Biosciences 562139
Mouse IgGM, κ Isotype Control, Alexa Fluor® 488 BD Biosciences 401617 isotype control for TRA-1-60
Mouse IgGM, κ Isotype Control, Alexa Fluor® 647 BD Biosciences 401618 isotype control for TRA-1-81
Mouse anti-human TRA-1-60, Alexa Fluor® 488 BD Biosciences 330613
Mouse anti-human TRA-1-81, Alexa Fluor® 647 BD Biosciences 330705
Mouse IgG1, κ Isotype Control, Alexa Fluor® 488 BD Biosciences 400129 isotype control for SSEA-1
Mouse IgG3, κ Isotype Control, Alexa Fluor® 647 BD Biosciences 401321 isotype control for SSEA-4
Mouse anti-human SSEA-1, Alexa Fluor® 488 BD Biosciences 323010
Mouse anti-human SSEA-4, Alexa Fluor® 647 BD Biosciences 330407
Affinipure F(ab')2 Fragment Goat Anti-Mouse IgG+IgM, Alexa Fluor® 488 Jackson Immunoresearch 115-606-068 use at a dilution of 1:600 or further optimize
Affinipure F(ab')2 Fragment Goat Anti-Mouse IgG+IgM, Alexa Fluor® 647 Jackson Immunoresearch 115-546-068 use at a dilution of 1:600 or further optimize
DAPI Thermo-Fisher Scientific D21490 stock solution 10 mM, further dilute to 1:12.000 for a working solution
Corning® Matrigel® Growth Factor Reduced, Phenol Red-Free Corning 356231 basement membrane matrix (BMM)
scid-beige mice, female Taconic CBSCBG-F
RNeasy Plus Mini Kit (50) Qiagen 74134 RNA isolation kit
T-25 flasks, tissue culture-treated Thermo-Fisher 156367
T-75 flasks, tissue culture-treated Thermo-Fisher 156499
Nunc™ tissue-culture dish Thermo-Fisher 12-567-650  10 cm tissue culture dish
6-well plates, tissue-culture treated Thermo-Fisher 140675
Neubauer counting chamber (hemacytometer) VWR 15170-173
Mr. Frosty™ Freezing Container Thermo-Fisher 5100-0001  freezing container
FACS tubes, Round Bottom Polystyrene Test Tube, 5ml Corning 352058 5 ml polystyrene tubes
Eppendorf tubes, 1.5 ml Thermo-Fisher 05-402-96 1.5 ml microcentrifuge tubes
PCR tubes, 200 µl Thermo-Fisher 14-222-262
pipette tips, 100 to 1250 µl Thermo-Fisher 02-707-407 narrow-bore 1 mL tips
pipette tips, 5 to 300 µl Thermo-Fisher 02-707-410
pipette tips, 0.1 to 10 µl Thermo-Fisher 02-707-437
wide-bore pipette tips, 1000 µl VWR 89049-166 wide-bore 1 mL tips
glass Pasteur pipettes Thermo-Fisher 13-678-20A
ethanol, 200 proof Thermo-Fisher 04-355-451
vortex mixer VWR 10153-842
chambered coverglass, 8-well, 1.5mm borosilicate glass Thermo-Fisher 155409 glass-bottom confocal-grade cultureware
22G needles VWR 82002-366
insulin syringes Thermo-Fisher 22-253-260
Formalin solution, neutral buffered, 10% Sigma-Aldrich HT501128-4L fixation of explanted teratomas
Illumina HT-12 v4 Expression BeachChip Illumina BD-103-0204 expression microarray, supported by PluriTest, discontinued by manufacturer
PrimeView Human Genome U219 Array Plate Thermo-Fisher 901605 expression microarray (formerly Affymetrix brand), soon to be supported by PluriTest
GeneChip™ Human Genome U133 Plus 2.0 Array Thermo-Fisher 902482 expression microarray (formerly Affymetrix brand), supported by CellNet, soon to be supported by PluriTest
PluriTest® Coriell Institute www.pluritest.org, free service for bioinformatic assessment of pluripotency, accepts microarray data – *.idat files from HT-12 v4 platform, soon to support U133, U219 microarray and RNA sequencing data
CellNet Johns Hopkins University cellnet.hms.harvard.edu, free service for bioinformatic identification of cell type, including plutipotent stem cells, based on U133 microarray data – *.cel files, soon to support RNA sequencing data

Referenzen

  1. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  2. Yu, J., et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science. 318 (5858), 1917-1920 (2007).
  3. Trounson, A., DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell Biol. 17 (3), 194-200 (2016).
  4. Schmidt, D., et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 116 (11 Suppl), I64-I70 (2007).
  5. Weber, B., Zeisberger, S. M., Hoerstrup, S. P. Prenatally harvested cells for cardiovascular tissue engineering: Fabrication of autologous implants prior to birth. Placenta. 32, S316-S319 (2011).
  6. Weber, B., et al. Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation. Biomaterials. 33 (16), 4031-4043 (2012).
  7. Kehl, D., Weber, B., Hoerstrup, S. P. Bioengineered living cardiac and venous valve replacements: current status and future prospects. Cardiovasc. Pathol. 25 (4), 300-305 (2016).
  8. Slamecka, J., et al. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions. Cell Cycle. 15 (2), 234-249 (2016).
  9. Jiang, G., et al. Human Transgene-Free Amniotic-Fluid-Derived Induced Pluripotent Stem Cells for Autologous Cell Therapy. Stem Cells Dev. 23 (21), 2613-2625 (2014).
  10. Pipino, C., et al. Trisomy 21 mid-trimester amniotic fluid induced pluripotent stem cells maintain genetic signatures during reprogramming: implications for disease modeling and cryobanking. Cell. Reprogram. 16 (5), 331-344 (2014).
  11. Cai, J., et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol. Chem. 285 (15), 11227-11234 (2010).
  12. Ge, X., et al. Human Amniotic Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells May Generate a Universal Source of Cardiac Cells. Stem Cells Dev. 21 (15), 2798-2808 (2012).
  13. Drozd, A. M., Walczak, M. P., Piaskowski, S., Stoczynska-Fidelus, E., Rieske, P., Grzela, D. P. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res. Ther. 6 (1), (2015).
  14. Kang, N. -. H., et al. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells. Cancer Gene Ther. 19 (8), 517-522 (2012).
  15. Moschidou, D., et al. Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a Transgene-free Approach. Mol. Ther. 20 (10), 1953-1967 (2012).
  16. Kim, K., et al. Epigenetic memory in induced pluripotent stem cells. Nature. 467 (7313), 285-290 (2010).
  17. Chen, G., et al. Chemically defined conditions for human iPSC derivation and culture. Nature Methods. 8 (5), 424-429 (2011).
  18. Yu, J., et al. Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science. 324 (5928), 797-801 (2009).
  19. Martí, M., et al. Characterization of pluripotent stem cells. Nat. Protoc. 8 (2), 223-253 (2013).
  20. Chan, E. M., et al. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat. Biotechnol. 27 (11), 1033-1037 (2009).
  21. Adewumi, O., et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25 (7), 803-816 (2007).
  22. Müller, F. -. J., et al. A bioinformatic assay for pluripotency in human cells. Nature Methods. 8 (4), 315-317 (2011).
  23. Cahan, P., Li, H., Morris, S. A., Lummertz da Rocha, E., Daley, G. Q., Collins, J. J. CellNet: Network Biology Applied to Stem Cell Engineering. Cell. 158 (4), 903-915 (2014).
  24. Schopperle, W. M., DeWolf, W. C. The TRA-1-60 and TRA-1-81 Human Pluripotent Stem Cell Markers Are Expressed on Podocalyxin in Embryonal Carcinoma. STEM CELLS. 25 (3), 723-730 (2007).
  25. Ohnishi, K., et al. Premature Termination of Reprogramming In Vivo Leads to Cancer Development through Altered Epigenetic Regulation. Cell. 156 (4), 663-677 (2014).
  26. Schlaeger, T. M., et al. A comparison of non-integrating reprogramming methods. Nature Biotechnology. 33 (1), 58-63 (2014).
  27. Müller, F. -. J., Goldmann, J., Löser, P., Loring, J. F. A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell. 6 (5), 412-414 (2010).
  28. Beers, J., et al. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat. Protoc. 7 (11), 2029-2040 (2012).

Play Video

Diesen Artikel zitieren
Slamecka, J., Laurini, J., Shirley, T., Hoerstrup, S. P., Weber, B., Owen, L., McClellan, S. Reprogramming Primary Amniotic Fluid and Membrane Cells to Pluripotency in Xeno-free Conditions. J. Vis. Exp. (129), e56003, doi:10.3791/56003 (2017).

View Video