Микроинъекция ооцитов мыши обычно используется как для классического трансгенеза ( т. Е. Для случайной интеграции трансгенов), так и для CRISPR-опосредованного гена. В этом протоколе рассматриваются последние разработки в области микроинъекции с особым акцентом на стратегии контроля качества и генотипирования.
Использование генетически модифицированных мышей значительно способствовало исследованиям как физиологических, так и патологических процессов in vivo . Пронуклеарная инъекция конструкций экспрессии ДНК в оплодотворенные ооциты остается наиболее часто используемым методом для генерации трансгенных мышей для сверхэкспрессии. С внедрением технологии CRISPR для нацеливания генов пронуклеарная инъекция в оплодотворенные ооциты была распространена на генерацию мышей с нокаутом и нокаутом. В этой работе описывается подготовка ДНК для инъекций и подготовка руководств CRISPR для ориентации генов с особым акцентом на контроль качества. Процедуры генотипирования, необходимые для идентификации потенциальных основателей, имеют решающее значение. Здесь представлены инновационные стратегии генотипирования, которые используют преимущества «мультиплексирования» CRISPR. Также описаны хирургические процедуры. Вместе этапы протокола позволят генерировать генерациюЭтически модифицированных мышей и для последующего создания колоний мыши для множества областей исследований, включая иммунологию, нейронауку, рак, физиологию, развитие и другие.
Модели животных, как у позвоночных, так и у беспозвоночных, сыграли важную роль в изучении патофизиологии состояний человека, таких как болезнь Альцгеймера 1 , 2 . Они также являются бесценными инструментами для поиска модификаторов болезни и в конечном итоге разрабатывают новые стратегии лечения в надежде на лечение. Хотя каждая модель имеет внутренние ограничения, использование животных как целых системных моделей жизненно важно для биомедицинских исследований. Это связано с тем, что метаболическая и сложная физиологическая среда не может быть полностью смоделирована в культуре тканей.
На сегодняшний день мышь остается наиболее распространенным видом млекопитающих, используемым для генетической манипуляции, поскольку она имеет несколько преимуществ. Физиологические процессы и гены, связанные с заболеваниями, очень сохраняются между мышами и людьми. Мышь была первым млекопитающим, имеющим полный геном, секвенированный (2002), за год до генома человекаМеня (2003). Помимо этого богатства генетической информации мышь обладает хорошей способностью к размножению, быстрым циклом развития (6 недель от оплодотворения до отлучения) и разумным размером. Все эти преимущества в сочетании с физиологическими показателями, такими как различные цвета пальто (необходимые для перекрестных стратегий), сделали мышь привлекательной моделью для генетических манипуляций. Примечательно, что в самом раннем возрасте современной генетики Грегор Мендель начал работать над мышами, прежде чем переходить на растения 3 .
Методы переноса гена привели к генерации первой трансгенной мыши в течение трех десятилетий назад 4 , первоначально созданной с использованием вирусной доставки. Однако вскоре исследователи поняли, что одной из основных проблем трансгенеза мыши является невозможность контролировать судьбу экзогенной ДНК. Поскольку вирусная доставка трансгенов в ооциты мыши приводила к множественным копиям, случайным образом интегрированным в геном, возможноY установления последующих трансгенных линий было ограничено.
Одно из таких ограничений было преодолено, когда Гордон и др. Генерировали первую трансгенную линию мыши путем микроинъекции 5 , 6 . Это начало эры технологии рекомбинантной ДНК, и параметры, влияющие на результат сеанса микроинъекции, были широко изучены 7 . Хотя микроинъекция не позволяет контролировать сайт интеграции трансгена (что в конечном итоге приводит к определенным уровням экспрессии для каждой мыши-основателя), основным преимуществом пронуклеарного микроинъекции остается образование конкатемеров ( т. Е. Массивов множественных копий трансгена, Связанные последовательно) до геномной интеграции 5 . Эта характеристика использовалась на протяжении многих лет, чтобы установить тысячи трансгенных линий мыши, которые сверхэкспрессируют ген, представляющий интерес. С тех пор трансгенезис, aRtificial модификация генома организма, широко используется для определения роли одиночных генов в возникновении заболеваний.
Еще одно ключевое достижение в манипуляции с геномом мыши было достигнуто, когда Марио Капечи успешно разрушил один ген мыши, открыв эру нацеливания гена 8 . Тем не менее, основные недостатки быстро возникали из нацеленного на ЭС клеточного гена, включая проблемы культивирования ES-клеток, несколько изменчивую степень химеризма и длину процесса ( т. Е. 12-18 месяцев, минимум, чтобы получить мышь) ,
Недавно появились новые технологии, такие как инженерные эндонуклеазы ( например, нуклеазы цинковых пальцев (ZFN), активатор-подобные эффекторные нуклеазы транскрипции (TALEN) и кластеризованные регулярно промежуточные короткие палиндромные повторы (CRISPR / Cas9)), как альтернативные методы Ускорить процесс нацеливания генов в микрофонE 9 , 10 . Эти эндонуклеазы могут быть легко введены в ооциты мыши путем микроинъекции, что позволяет генерировать ген-целевых мышей всего за 6 недель.
Начиная с первого отчета об использовании CRISPR для редактирования генома 11 , эта бактериальная адаптивная иммунная система заменила ZFN и TALEN из-за ее многочисленных преимуществ, в том числе легкости синтеза и способности сразу нацеливать несколько локусов (называемых «мультиплексированием» «). CRISPR был впервые использован для нацеливания генов у мышей 12 и с тех пор применяется к бесчисленным видам, от растений до людей 13 , 14 . На сегодняшний день нет отчета об одном виде, устойчивом к редактированию генома CRISPR.
Двумя основными предельными стадиями генерации трансгенных мышей являются инъекция ооцитов и реимплантацияИз этих ооцитов в псевдо-беременных женщин. Хотя эта методика была описана нами 15 и другими 16 , последние технические усовершенствования эмбриологии мыши и методов переноса генов коренным образом изменили процесс генерации генетически модифицированных мышей. Эти улучшения будут описаны здесь.
Критические шаги в протоколе
Известно, что генерация генетически модифицированных мышей технически сложна. Однако представленный здесь протокол представляет собой оптимизированный и упрощенный метод, позволяющий осваивать и устранять эту технику в рекордные сроки. Дл…
The authors have nothing to disclose.
Авторы выражают благодарность персоналу животного объекта (BRC) за их постоянную поддержку. Эта работа финансировалась Национальным советом по здравоохранению и медицинским исследованиям и Австралийским исследовательским советом.
Micropipette 0.1-2.5 ul | Eppendorf | 4920000016 | |
Micropipette 2-20 ul | Eppendorf | 4920000040 | |
Micropipette 20-200 ul | Eppendorf | 4920000067 | |
Micropipette 100-1000 ul | Eppendorf | 4920000083 | |
Molecular weight marker | Bioline | BIO-33025 | HyperLadder 1kb |
Molecular weight marker | Bioline | BIO-33056 | HyperLadder 100 bp |
Agarose | Bioline | BIO-41025 | |
EDTA buffer | Sigma-Aldrich | 93296 | 10x – Dilute to 1x |
Ethidium bromide | Thermo Fisher Scientific | 15585011 | |
SYBR Safe gel stain | Invitrogen | S33102 | |
Gel extraction kit | Qiagen | 28706 | |
PCR purification kit (Qiaquick) | Qiagen | 28106 | |
Vacuum system (Manifold) | Promega | A7231 | |
Nuclease-free microinjection buffer | Millipore | MR-095-10F | |
Ultrafree-MC microcentrifuge filter | Millipore | UFC30GV00 | |
Cas9 mRNA | Sigma-Aldrich | CAS9MRNA | |
CRISPR expressing plasmid (px330) | Addgene | 42230 | |
Nuclease free water | Sigma-Aldrich | W4502 | |
Phusion polymerase | New England Biolabs | M0530L | |
T7 Quick High Yield RNA kit | New England Biolabs | E2050S | |
RNA purification spin columns (NucAway) | Thermo Fisher Scientific | AM10070 | |
ssOligos | Sigma-Aldrich | OLIGO STANDARD | |
Donor plasmid | Thermo Fisher Scientific | GeneArt | |
Hyaluronidase | Sigma-Aldrich | H3884 | |
KSOMaa embryo culture medium | Zenith Biotech | ZEKS-100 | |
Mineral oil | Zenith Biotech | ZSCO-100 | |
M2 Medium | Sigma-Aldrich | M7167 | |
Cytochalasin B | Sigma-Aldrich | C6762 | |
Mouthpiece | Sigma-Aldrich | A5177 | |
Glass microcapillaries | Sutter Instrument | BF100-78-10 | |
Proteinase K | Applichem | A3830.0100 | |
Dumont #5 forceps | Fine Science Tools | 91150-20 | |
Iris scissors | Fine Science Tools | 91460-11 | |
Vessel clamp | Fine Science Tools | 18374-43 | |
Wound clips | Fine Science Tools | 12040-01 | |
Clips applier | Fine Science Tools | 12018-12 | |
Micro-scissors | Fine Science Tools | 15000-03 | |
Cauterizer | Fine Science Tools | 18000-00 | |
Non-absorbable surgical sutures (Ethilon 3-0) | Ethicon | 1691H | |
5% CO2 incubator | MG Scientific | Galaxy 14S | |
Spectrophotometer | Thermo Fisher Scientific | Nanodrop 2000c | |
Thermocycler | Eppendorf | 6321 000.515 | |
Electrophoresis set up | BioRad | 1640300 | |
UV Transilluminator | BioRad | 1708110EDU | |
Thermocycler | Eppendorf | 6334000069 | |
Stereoscopic microscope | Olympus | SZX7 | |
Inverted microscope | Olympus | IX71 | |
2x Micromanipulators | Eppendorf | 5188000.012 | |
Oocytes manipulator | Eppendorf | 5176000.025 | |
Microinjector (Femtojet) | Eppendorf | 5247000.013 | |
Mice C57BL/6J strain | Australian BioResources | C57BL/6JAusb |