Bu makale, iyon kanallarındaki yapısal yeniden düzenlenmeleri araştırmak için maleimid boyaları yerine Floresan Doğal olmayan Amino Asitlerin (fUAA) kullanıldığı klasik Voltaj-Kelepçe Florometrisinin (VCF) geliştirilmesini anlatıyor. Prosedür, Xenopus oosit DNA enjeksiyonu, RNA / fUAA koinjeksiyon ve eşzamanlı akım ve flüoresans ölçümlerini içerir.
Gerilim-Kelepçe Fluorometri (VCF), gerçek zamanlı floresan ve akım ölçümlerinin sırasıyla lokal düzenlenmeler ve küresel işlev üzerine rapor verdiği elektrojenik membran proteinlerinin yapısını ve fonksiyonunu araştırmak için tercih edilen bir tekniktir. Kriyo elektron mikroskopisi veya X-ışını kristalografisi gibi yüksek çözünürlüklü yapısal teknikler ilgi proteinlerin statik görüntülerini sağlarken, VCF yapısal yeniden düzenlenmeleri (flüoresan) dinamik fonksiyonel verilere (elektrofizyoloji) bağlamamızı sağlayan dinamik yapısal veriler sağlar. Yakın zamana kadar, proteinlerin yer yönünde flüoresan etiketlemesi için kullanılan tiyol reaktif kimyası, yaklaşımın kapsamını kısıtladı, çünkü endojen olanlar da dahil erişilebilir sisteinler etiketlenecek. Dolayısıyla, endojen sisteinlerden bağımsız proteinler oluşturmak gerekiyordu. Etiketleme ayrıca, hücre dışıyan. Bu, ortogonal bir tRNA ve tRNA sentetaz çifti 2 kullanılarak durdurma kodonunun bastırılmasına yanıt olarak küçük bir fluoresan probu özel olarak dahil etmek için Floresan Doğal Olmayan Amino Asitler (fUAA) kullanılarak değiştirildi. VCF gelişimi sadece DNA enjeksiyonunun (tRNA / sentetaz çifti) iki aşamalı enjeksiyon prosedürüne ve ardından RNA / fUAA ko-enjeksiyonuna ihtiyaç duyar. Şimdi hem hücre içi hem de gömülü alanları etiketlemek mümkündür ve VCF kullanımı önemli ölçüde genişlemiştir. Bu nedenle, VCF tekniği geniş bir protein yelpazesinin incelenmesi için çekici hale gelir ve daha da önemlisi, çok sayıda sitosolik düzenleyici mekanizmanın araştırılmasına izin verir.
Çeşitli kimyasal ve fiziksel özelliklerin 200'den fazla doğal olmayan amino asitleri genetik olarak E. coli , maya ve memeli hücrelerindeki proteinlere dahil edilmiştir 3 . Doğal olmayan amino asit, ortogonal olarak tasarlanmış bir tRNA / sentetaz çiftiyle belirli bir durdurma kodonuna tepki olarak dahil edilir. Proteinleri değiştirmek için genetik yaklaşım, protein yapısına ve işlevine değerli bilgiler sağlamıştır. Burada, Gerilim-Kelepçe Florometrini (VCF) floresan bir UAA ile kombine etmek için bir protokol sunuyoruz.
VCF'de, flüoresan prob etrafında lokalize olan fonksiyonel verilerin ve yapısal yeniden düzenlemelerin aynı anda gözlemlenmesi (~ 5 Å), milisaniye çözünürlük 1 ile dinamik bilgi elde etmemize izin verir. Flüoresan problar, lokalize protein hareketi üzerine söndürme durumunu değiştirir. Sadece 1-2 A'lık bir hareket, flüoresanda önemli değişiklikler yaratmaya yeterlidirYoğunluk 4 . Hedef proteindeki ilgi alanının belirlenmesinden sonra, site nokta mutasyonu ile mutasyona uğratılmıştır. Klasik olarak, tortu bir sisteine dönüştürüldü, oysa şimdi, amber stop kodonu (TAG) genetik fUAA'nın birleşmesi için eklendi. Protein daha sonra in vitro olarak kopyalanır.
Xenopus oositleri, daha büyük manipülasyona ve daha yüksek floresans yoğunluğuna (daha fazla florofor) yol açan, yapı fonksiyonu çalışmaları için tercih edilirken , diğer ifade sistemleri ( örneğin, memeli hücreleri) 5 , 6 , 7 kullanılabilirken, Gürültü oranı. Üstelik, Xenopus oositleri, 2 , 8 nolu endojen proteinlerden düşük arka plana ve hayvan kutbu kalkanlarında karanlık pigmentasyona karşı tSitosol. Xenopus oositleri cerrahi olarak çıkarılır ve fUAA için spesifik olan ortogonal tRNA / tRNA sentetaz çiftini kodlayan DNA, oositlerin çekirdeğine enjekte edilir. 6-24 saatlik inkübasyon süresinden sonra, protein RNA, oositlerin sitozolüne fUAA ile birlikte enjekte edilir, bunu 2-3 gün inkübasyon periyodu takip eder. FUAA'ya herhangi bir hasar vermemek için (foto-ağartma), florofor uyarımını önlemek için Anap dahil prosedürler kırmızı ışık altında gerçekleştirilmelidir.
Oositler dik bir flüoresan mikroskopta monte edilmiş kesilmiş açık oosit gerilim-kelepçe düzeneği üzerinde incelenir ve elektrik akımı ve floresans değişiklikleri aynı anda 9 , 10 olarak kaydedilir. Alternatif olarak, iki elektrotlu voltaj kelepçesi 1 veya yama-kelepçe konfigürasyonları 11 kullanılabilir. Floresans, düşük RMS gürültüsü olan uygun dalga boyları tarafından uyarılır ve Yüksek amplifikasyonlu bir amplifikatöre bağlı bir fotodiyot kullanılarak kaydedilen emisyon.
Gerilim-kelepçe florometride flüoresan doğal olmayan amino asitler (fUAAs) kullanmanın çeşitli avantajları vardır. Bir tanesi membran proteinlerinin sitosolik tarafına erişimdir; ( Örneğin, Ca 2+ – veya nükleotid bağlanma bölgeleri, voltaj kapılı iyon kanallarının hızlı ve kapalı halde inaktivasyonu, gözenek açma, modül bağlantısı). Tüm bu süreçlere flüoresan etiketleme için artık erişilebilir.
Bir diğer avantaj ise, proteinin daha az bozulmasına yol açan probun küçük boyutu olmasıdır. Şimdiye kadar, fUAAs için iki ortogonal tRNA / tRNA sentetaz çiftleri, Xenopus oositlerinde kullanılan tek fUAA olan 3- (6-asetilnaftalen-2-ilamino) -2-aminopropanoik asitin (Anap) 12,13 olduğu düşünülmüştür 2 ,"Xref"> 8. Anap, 272.3 g / mol molekül ağırlığına sahip ve sadece triptofan 12'den biraz daha büyük olan çevreye duyarlı bir florofordur ( Şekiller 1A, 1B ). Küçük boyundan ötürü, bir bağlayıcı vasıtasıyla bağlanan konvansiyonel fluoroforlara kıyasla (genelde 500 g / mol'den fazla) florofor tarafından daha az sterik etkinin ortaya çıkması muhtemeldir. Dahası, Anapa durumunda, flüorofor, sisteinlerle bağlantılı olanlardan daha protein omurgasına yakın konumda bulunur ve sonuç olarak, Anap daha fazla lokalize yeniden düzenleme istemektedir. Son olarak, bölgeye özgü etiketlemeyi sağlamak için konvansiyonel VCF'deki endojen sisteinlerin uzaklaştırılması, UAA-VCF'de artık gerekli değildir ve bu nedenle (i) proteinleri neredeyse kendi doğal hallerinde bırakır ve (ii) VCF'nin uygulanmasına izin verir Fonksiyonun sistein ikamesi ile değiştirilebildiği daha geniş bir protein aralığını incelemek.
<img alt="Şekil 1" src = "/ files / ftp_upload / 55598 / 55598fig1.jpg" />
Şekil 1 : Anap ve Floresans Spektrumu. ( A ) Anapın kimyasal yapısı. ( B ) Anap floresanının solventin hidrofobikliğine duyarlılığını gösteren 1 nM Anap için normalleştirilmiş absorpsiyon spektrumu ve emisyon spektrumu. Emisyon spektrumu, 350 nm'de heyecan verici şekilde elde edildi. Bu rakamın daha büyük bir versiyonunu görmek için lütfen tıklayınız.
Floresan UAAs'ın bir dezavantajı, aminoasillenmiş tRNA'ların miktarı azsa, durma kodonu okunması, translasyonel yeniden başlatma, C-terminali kesilmiş proteinler veya endojen aminoasilasyona sahip çapraz geçişten heterojen bir protein popülasyonunun oluşabilmesidir. Bu sızıntı ekspresyonu daima fUAA'nın ve tRNA / tRNA sentetaz çifti yokluğunda kontrol edilmelidir. Trans sorununu ele aldık.Lasyonel yeniden başlatma ve daha önce N-terminal ekleme siteleri için nasıl önüne geçileceği 14 . Bununla birlikte, fUAA, tRNA ve tRNA sentetaz doymuş miktarda mevcut olduğunda, sızıntı ekspresyonu olasılığı düşüktür.
FUAA-VCF ve konvansiyonel VCF arasındaki temel usul farkı, oositlerin enjeksiyonu ve taşınmasıdır; TRNA ve tRNA sentetazı (pAnap) kodlayan DNA'nın enjeksiyonu ya protein mRNA'yla birlikte enjekte edilen veya alternatif olarak bir asetoksimetil (AM) ester olarak inkübasyon solüsyonuna eklenen Anap'ın sokulması ile devam eder.
Sürekli olarak tRNA sentetaz ile transkribe edilen tRNA'ların in vivo aminoasilasyonu, floresan ölçümleri için yüksek ekspresyon seviyeleri elde etmeyi mümkün kılar. Etkin fUAA birleşimi için pAnap'ın çekirdeğe doğru enjekte edilmesi önemlidir. Çekirdeğin tam yerinin belirsizliği nedeniyle, DNA enjeksiyonlarının% 10-40'ında başarısız olması ve bunun da ifade edilmeyen (veya sızıntı ifade eden) oositlerin ortaya çıkması beklenir. Bu nedenle, sızıntı kanallarında m…
The authors have nothing to disclose.
PAnap, Dr. Peter Schultz (Scripps Araştırma Enstitüsü) 'nin kibar bir hediyesiydi. Bu çalışma, Kanada Sağlık Araştırma Grants Enstitüleri MOP-102689 ve MOP-136894 (RB'ye) ve Canadian Foundation for Innovation Grant 950-225005 tarafından finanse edildi.
Solutions | |||
Barth's solution | |||
NaCl | Sigma-Aldrich | S7653 | 90mM |
KCl | Fisher Scientific | BP366-500 | 3mM |
MgSO4 | Sigma-Aldrich | M-9397 | 0.82mM |
CaCl2 | Sigma-Aldrich | C-7902 | 0.41mM |
Ca(NO3)2 | Sigma-Aldrich | C-1396 | 0.33mM |
HEPES | Sigma-Aldrich | H4034 | 5mM |
NaOH hydrate | BDH | BDH7225-4 | pH 7.6 |
Penicilin | Invitrogen | 15140122 | 100U/mL |
Streptomycin | Invitrogen | 15140122 | 100µg/mL |
Kanamycin | Invitrogen | 15160054 | 10mg/100mL |
Horse serum | Invitrogen | 16050122 | 5% |
SOS Standard Oocyte Solution | |||
NaCl | Sigma-Aldrich | 746398 | 102 mM |
KCl | Sigma-Aldrich | 746436 | 3 mM |
MgCl2 | Sigma-Aldrich | M9272 | 1 mM |
HEPES | Sigma-Aldrich | H4034 | 5 mM |
External recording solution | |||
N-methyl-D-glucamine (NMDG) | Alfa Aesar | L14282 | 115mM |
HEPES | Sigma-Aldrich | H4034 | 10mM |
Calcium hydroxide | Sigma-Aldrich | 239232 | 2mM |
MES hydrate | Sigma-Aldrich | 258105 | pH 7.2 |
Internal recording solution | |||
N-methyl-D-glucamine (NMDG) | Alfa Aesar | L14282 | 115mM |
HEPES | Sigma-Aldrich | H4034 | 10mM |
Ethylenediamine Tetraacetic Acid (EDTA) | Fisher Scientific | E478-500 | 2mM |
MES hydrate | Sigma-Aldrich | 258105 | pH 7.2 |
Labeling solution | |||
KOH | Fisher Scientific | P250-1 | 115mM |
HEPES | Sigma-Aldrich | H4034 | 10mM |
Calcium hydroxide | Sigma-Aldrich | 239232 | 2mM |
MES hydrate | Sigma-Aldrich | 258105 | pH 7.2 |
TMR stock solution | |||
Tetramethylrhodamine-5-maleimide (TMR) | Molcular Probes by Life Technologies | T6027 | 5mM in DMSO |
Anap stock solution | |||
Anap | ABZENA (TCRS) | Custom synthesis TCRS-170 | 1mM in nuclease-free water and 1% NaOH 1N |
Name | Company | Catalog Number | Comments |
Material/Equipment | |||
pAnap | Addgene | 48696 | |
High Performance Oocyte Clamp | Dagan Corporation | CA-1B | |
Gpatch Acquisition software | Department of Anesthesiology, University of California, Los Angeles | ||
Analysis software | Department of Anesthesiology, University of California, Los Angeles | ||
Recording Chamber | Custom machined | ||
Photo diode detection system | Dagan Corporation | PhotoMax-200/PIN | |
Electrical shutter driver | UNIBLITZ | VCM-D1 |