Here, we present a protocol to investigate the host-tissue distribution, transmission mode, and effect on the host fitness of a densovirus within a lepidopteran species, the cotton bollworm. This protocol can also be used for studying the interaction between other orally-transmitted viruses and their insect hosts.
Many novel viruses have been discovered in animal hosts using next-generation sequencing technologies. Previously, we reported a mutualistic virus, Helicoverpa armigera densovirus (HaDV2), in a lepidopteran species, the cotton bollworm, Helicoverpa armigera (Hubner). Here, we describe the protocols that are currently used to study the effect of HaDV2 on its host. First, we establish a HaDV2-free cotton bollworm colony from a single breeding pair. Then, we orally inoculate some neonate larval offspring with HaDV2-containing filtered liquid to produce two colonies with the same genetic background: one HaDV2-infected, the other uninfected. A protocol to compare life table parameters (e.g., larval, pupal, and adult periods and fecundity) between the HaDV2-infected and -uninfected individuals is also presented, as are the protocols for determining the host-tissue distribution and transmission efficiency of HaDV2. These protocols would also be suitable for investigating the effects of other orally transmitted viruses on their insect hosts, lepidopteran hosts in particular.
In the last few decades, the development of sequencing technology such as next-generation sequencing (NGS) has facilitated the discovery of many novel DNA and RNA viruses, especially nonpathogenic viruses, but also novel isolates of previously known viruses1,2,3,4,5,6,7,8,9,10,11,12. In the model organism Drosophila melanogaster, more than 20 new partial virus genomes have been detected using metagenomic techniques13. Many viral sequences, including novel viruses, have also been identified in other insects, such as honey bees, mosquitoes, Asian citrus psyllids, dragonflies, and multiple lepidopteran species14,15,16,17,18,19,20,21.
In the future, it can be expected that more novel viruses will be discovered in insects using these advanced technologies; hence, our understanding of the virus-host interaction may change accordingly6,9. For example, virus-host interactions are considered to be more complicated than previously thought, because many novel viruses are being defined as mutualistic partners rather than strict pathogens22. For example, the mutualistic densovirus DplDNV in Dysaphis plantaginea induces the winged morph and increases mobility, facilitating the dispersal of the host as well as the virus23. Moreover, mutualistic viruses have been described with regards to mammalian health, the drought and cold tolerance of plants, and the impact of bacterial infections24. Seneca valley virus-001 is shown to mediate selective cytotoxicity towards tumor cells with neuroendocrine cancer features25. Hepatitis A virus infections suppress hepatitis C virus replication and may lead to recovery from hepatitis C26. Herpesvirus latency confers symbiotic protection from bacterial infection27. The envelope glycoprotein of human endogenous retrovirus HERV-W induces cellular resistance to spleen necrosis virus28. Curvularia thermal tolerance virus (CThTV) from a fungal endophyte is involved in the mutualistic interaction between this fungus and a tropical panic grass29. Hence, knowledge of the interactions between the newly found viruses and their hosts should generate fresh perspectives on their biology and management. However, the novel viruses, especially the covert viruses displaying no obvious signs typical of acute infection, have seldom been investigated, and we need a pipeline and protocols to investigate the impacts of the newly found viruses on their hosts.
Previously, we have reported the prevalence a new monosense densovirus Helicoverpa armigera densovirus (HaDV2) in the cotton bollworm, Helicoverpa armigera, and presented evidence of a mutualistic relationship between HaDV2 and the cotton bollworm30,31. In this paper, we will describe the laboratory protocol to study in detail the interaction between HaDV2 and its cotton bollworm host. The protocol presented here may also be highly relevant to researchers examining the role of other orally-transmitted viruses, especially in lepidopteran pests.
1. Construction of the HaDV2-free Cotton Bollworm Colony
2. Preparation of HaDV2-containing Liquid Fluids
NOTE: We have shown that the attempted purification of the HaDV2 virus particles inhibits their infectivity and activity31; therefore, the following protocol is performed to achieve the infective HaDV2 solution by filtering the HaDV2-infected individuals.
3. Construction of the HaDV2-infected Cotton Bollworm Colony
4. Tissue Distribution of HaDV2
5. Bioassays Testing the Effect of HaDV2 on Host Development
Progenies from the parents that were HaDV2-free (Figure 3A) were reared as the NONINF-strain. We successfully amplified the actin gene using the same DNA templates, suggesting that the DNA templates were of good quality (Figure 3B). In addition, the randomly selected eight progenies were also free of HaDV2 (Figure 3C), HaNPV (Figure 3D), and Wolbachia (Figure 3E). Again, we concluded that the DNA samples of the progenies were of good quality, because a portion of actin gene was successfully amplified for all tested samples (Figure 3F).
A standard curve defining the relationship between the log of the quality of starting material and the gained CT values was generated, as in Figure 4. A strong linear correlation (R2 > 0.99) was found between the CT values and the log of the initial gene copy number of HaDV2 (Figure 4).
Freshly hatched larvae were inoculated with a point standard curve of HaDV2 liquid fluids using 10-fold serial dilutions between 104 and 108 copy number/µL. We obtained a linear correlation between the infection frequency and the concentrations of the HaDV2 liquid fluids; 108 copy number/µL yielded 100% infection for the cotton bollworm, but other concentrations did not (also see Xu et al.31). The HaDV2 infection frequencies of the progenies from the parents with different HaDV2 infection statuses were as follows: 100% for ♀+/♂-, 78% for ♀-/♂+, and 100% for ♀+/♂+ (also see Xu et al.31).
To correct for individual differences in the HaDV2 titer, we calculated the HaDV2 copy number per mg of each tissue and the percentage of the total HaDV2 titer for the specific tissue. The results revealed that HaDV2 was mainly distributed in the fat body (Figure 5; also see Xu et al.31). Comparisons of the life table parameters, including the larval periods, pupae periods, adult length, and fecundity, were shown in Table 1 (also see Xu et al.31). The larval and pupal masses were as published by Xu et al.31. The HaDV2 infection statuses in both the NONINF-strain and the INF-strain were determined by PCR (results published by Xu et al.31).
Figure 1. Dissected Tissues for (A) Larvae, (B) a Female Adult, and (C) a Male Adult. H, head (brain); He, hemolymph; FB, fat body; Mt, Malpighian tubules; G, gut; FG, foregut; MG, midgut; HG, hindgut; Mu, muscles; O, ovary; T, testis. Please click here to view a larger version of this figure.
Figure 2. Bioassay Procedure to Determine the Effects of HaDV2 on the Cotton Bollworm. (A) Inoculation of the freshly hatched larvae with HaDV2. (B) The transfer of the HaDV2-infected and HaDV2-free individuals to 24-well plates after 48 h. (C) Different sizes of HaDV2-infected and -free individuals. (D) Transfer of fifth-instar larvae to new glass tubes (10 cm height, 2 cm diameter). (E) The placement of one female and one male moth into the same cage to determine adult longevity, egg production, and hatch rate. Please click here to view a larger version of this figure.
Figure 3. Infection Status for HaDV2, HaNPV, or Wolbachia in HaDV2-infected and HaDV2-free Colonies. HaDV2 infection status in the female and male parents (A). Infection status of HaDV2 (C), HaNPV (D), and Wolbachia (E) in the randomly selected progenies. To check the quality of genomic DNA, the housekeeping gene actin was also amplified for the parents (B) and progenies (F). Lane M shows the DL2000 marker (2,000 bp, 1,000 bp, 750 bp, 500 bp, 250 bp, and 100 bp). Lane 1: female parent. Lane 2: male parent. Lane 3 – 10: progenies. Please click here to view a larger version of this figure.
Figure 4. The Standard Curve Correlating Log 2-transformed HaDV2 Concentrations to Cycle Threshold (CT) Values. Please click here to view a larger version of this figure.
Figure 5. Host-tissue Distribution of HaDV2 in Larvae (A), Adult Female (B), and Adult Male (C) Cotton Bollworms. Percentage (%) = the ratio of HaDV2 in different tissues (per mg), as described in step 4.7 The data were analyzed statistically using analysis of variance (ANOVA) and Tukey's test (larvae: n = 7; adult males: n = 6; adult females: n = 6). Means ± SE. Results were published by Xu et al.31. Please click here to view a larger version of this figure.
Life-history parameters | HaDV2+ | HaDV2− | t value | d.f. | P value | |
Larval period (days) | Male | 16.51 (± 0.72) | 16.93 (± 1.21) | 4.147 | 379 | <0.001 |
Female | 16.51 (± 0.79) | 16.80 (± 1.05) | 2.732 | 312 | 0.0067 | |
Pupal period (days) | Male | 13.02 (± 0.68) | 13.31 (± 0.69) | 4.057 | 379 | <0.001 |
Female | 11.62 (± 0.67) | 12.00 (± 0.63) | 5.1 | 312 | <0.001 | |
Longevity of adult (days) | Male | 10.69 (± 1.98) | 10.93 (± 2.46) | 0.915 | 367 | 0.36 |
Female | 9.07 (± 1.98) | 8.51 (± 1.58) | 2.992 | 367 | 0.003 | |
Number of eggs produced per female | 482 (± 174) | 403 (± 180) | 2.172 | 93 | 0.032 | |
Number of hatchings per female | 207 (± 108) | 143 (± 99) | 3.026 | 93 | 0.0032 |
Table 1. Life-history Parameters for HaDV2+ and HaDV2-cotton Bollworms. Student's t-test is used to determine the level of significance. Means ± SE are shown. Data presented in this table were published by Xu et al.31.
In the last few decades, most studies on insect-virus interactions have focused on honey bee health34,35,36, vectors of human disease37, plant viruses38, and some insect pathogenic viruses that have great potential as biological control agents39. Little attention has been paid to covert viruses in insects, especially in lepidopteran pests. Here, we present a protocol for the study of the interactions between a covert virus and its host insect. A comparison of the life table parameters for virus-infected and virus-free host individuals should ideally exclude any effect of differences in host genetic background. To study the viral phenotype, many previous studies have compared the life table parameters of either naturally infected or uninfected individuals in the same colony or individuals inoculated by microinjection, but this effort is time consuming23,40. The oral inoculation of cotton bollworms with HaDV2, described here, serves as a simple and effective means to analyze viral phenotypes. This procedure also ensures the same genetic background for HaDV2-infected and HaDV2-uninfected colonies.
Virus inoculum can be prepared in many ways. The purification of virus particles using high-speed centrifugation inhibits virus infectivity, resulting in low infectivity; hence, virus-containing filtered liquid was used to infect the cotton bollworm larvae31. The fact that the 0.22-µm membrane can filter out most fungal and bacterial particles from HaDV2-containing filtered liquid and that the HaDV2-free filtered liquid was used as the control might exclude the effect of other viruses on our results. However, we cannot exclude the possibility that the bioassay results could also be biased by undiscovered viruses. Hence, HaDV2 particles with high infectivity should ideally be purified in the future to obtain robust results.
The virus concentration positively correlated with virus infectivity; hence, we were interested in determining the HaDV2 concentration that will yield 100% infection. Our results showed that the 108 copy number/µL could be used for the virus inoculation to obtain this infection rate. Undoubtedly, the correlation between virus titer and infection rate should be studied for other virus-host interactions studied in the future. In addition, the virus titer of each individual in the field should also be explored. Hence, we could then simulate the effect of viruses upon individuals in the field.
The gentle handling of the delicate larvae during the first few days after they hatch is very important, because they are easily fatally damaged. Moreover, the HaDV2-uninfected colony should be kept separately in the greenhouse to prevent HaDV2 contamination-the infection rate of HaDV2 has been found to be very high, both in the field and in the laboratory31.
The authors have nothing to disclose.
This work was supported by the National Key Basic Research Program of China (No. 2013CB127602) and the Science Fund for Creative Research Groups of the National Science Foundation of China (No. 31321004).
24-well plate | Corning | 07-200-740 | Multiple suppliers available. |
DNA extraction kit | TIANGEN | DP304-03 | Multiple suppliers available. |
thermal cycler | Veriti; Applied Biosystems | 4375786 | |
PBS | Corning | 21-040-CV | |
0.22 µm membrane filter | Millipore | SLGS025NB | |
pEASY-T Cloning Vector | TransGen, Beijing, China | CT301-02 | |
Tweezers | IDEAL-TEK | 2.SA | |
Premix Ex Taq (Probe qPCR) | Takara | RR390A | |
Probes | Invitrogen | Custom order | |
Primers | Invitrogen | Custom order | |
microspectrophotometry NanoDrop 2000c | Thermo scientific | not available | |
7500 Real-Time PCR system | Applied Biosystems | not available | |
stereomicroscope SZX-16 | Olympus | not available | |
sucrose | Multiple suppliers available. | ||
vitamin complex | Multiple suppliers available. |