Summary

用分体式跑步机评价人类运动适应的泛化

Published: August 23, 2017
doi:

Summary

我们描述调查人类运动适应使用拆分带跑步机,具有可以以不同的速度行驶每条腿的两个带的协议。具体地说,我们重点旨在测试的不同行走的上下文 (例如,步行速度、 步行环境) 适应运动模式推广的范式。

Abstract

了解运动学习的基本机制有助于研究人员和临床医生优化步态再培训作为汽车康复的一部分。然而, 研究人类的运动学习可能是有挑战性的。在婴儿期和孩童时期, 神经肌肉系统是相当不成熟的, 而且在发育早期阶段的运动学习不太可能与成年时相同的机制所支配。当人类达到成熟的时候, 他们是如此精通步行, 很难想出一个足够新颖的任务来研究从头开始的运动学习。分体式跑步机, 它有两个皮带, 可以以不同的速度驱动每条腿, 使研究短-(, 立即) 和长期 (, 超过分钟的时间; 运动学习的形式) 步态的修改, 以响应在步行环境中的新变化。个人可以很容易地被筛选为以前暴露于分裂带式跑步机, 从而确保所有实验参与者没有 (或同等) 的先验经验。本文介绍了一个典型的分体式跑步机适应协议, 它包含了测试方法, 以量化运动学习和推广这种学习的其他步行环境。关于设计分体式跑步机试验的重要考虑因素如下: 包括跑步机皮带速度、休息时间和干扰。此外, 讨论中还考虑了潜在但理解的混杂变量 (例如、arm 移动、先验经验)。

Introduction

拆分带跑步机上有可以开车每条腿,在不同的速度或方向不同的两个带。此设备是第一次用于 45 年前作为一种工具研究的双腿之间 (,肢间协调) 行走1过程中的协调。这一点,和其他早期的研究主要使用猫作为实验模型123,但昆虫也研究了的4。在人类的婴儿和成人的拆分带运动的第一批调查发表在 1987 年和 1994 年,分别为56。这些初期的研究在人类和非人类的动物主要是研究了短期 (,立即) 调整在肢间的协调,以维持稳定和向前进展,当以不同的速度驱动的双腿。1995 年的研究指出,长时间 (几分钟) 拆分带行走的损害人类的成年人,准确地感知跑步机传送带速度并进行调整的能力,以均衡速度在每边。这表明,走路的感觉运动映射重新调整的7。然而,它是不直到 2005 年第一次详细的人类电机适应运动报告超过 10 分钟的拆分带跑步机上行走被出版的8

电机的适应是指错误驱动的过程,其间的纯熟的动作感觉运动映射将在响应新的、 可预测的需求9中调整。这是一种发生在扩展的实习期间 (分钟到数小时) 的运动技能学习和后遗症,是运动模式时删除需求的变化和/或条件的结果返回到正常。例如,最初走上分裂带导致人与不对称的肢间协调,类似于一瘸一拐行走。在拆分带步行几分钟,人适应他们行走的协调,使他们的步态变得更加对称。当两个带随后返回到相同的速度 (捆绑带) 时,从而恢复正常行走的情况下,人们表现出后遗症步行,以不对称的协调。这些后遗症必须积极地去适应,或在几分钟的系带行走之前正常行走协调是恢复的8不通。

继 2005年斯曼等人8走在人类的拆分带运动学分析,在发表的研究拆分带跑步机的使用增加了大约十倍相比前, 十年。为什么拆分带跑步机正越来越受到欢迎,作为实验的工具?拆分带移动显然是一项实验室的任务 — — 最接近真实的模拟是转弯或走在一个紧密的圆圈,但拆分带跑步机诱导更极端的版本的转动,一条腿比其他更快推动两到四倍。事实上,分裂带跑步机是一个极不寻常的行走任务提供研究自发学习的几个优点。首先,它是新型的大多数人不分年龄和独立行走的经验;它是易于屏幕实验参与者为新奇的拆分带行走。第二,拆分带跑步机诱导肢间协调不迅速解决的相当大变化。相对较慢的适应和脱适应率允许我们研究如何不同训练干预可以改变这些费率而不必接近上限。第三,运动810,动力学11121314,肌电图61516,和感性7171819修改出现的拆分带跑步机适应已经完善的研究,由于这项任务20 神经控制 2122。换句话说,拆分带跑步机适应有被记录和复制由几个不同的组,使这清晰的描述自发学习任务。

过去十多年来,几个研究表明拆分带适应的任务和特定于上下文的性质。在振幅大大减少这些后遗症拆分带适应修改后,如果他们测试了从培训状况的不同条件下。例如,后遗症较小,如果人移动到一个不同的环境 (例如,在地面行走23),执行不同的运动任务 (例如,向后走路或跑步1324),或甚至走在以不同的速度从慢带的速度适应25。正在努力建立控制的运动适应泛化参数。

本文的目的是描述一个协议来使用拆分带跑步机探讨人类运动适应和适应模式对其他行走的上下文 (,不同的行走速度和环境) 的泛化。虽然议定书 》 所述这里是大多数直接派生中 Hamzey等人所用25 (图 1),应该指出的是,本议定书获悉由大量的研究,它之前8232426 2728。该方法最初是假说保持恒常步行速度之间,跑步机和地面环境相比会提高泛化拆分带穿过这些不同的环境25。在下面的协议部分,我们给说明如何复制此版本的拆分带跑步机的方法,以指示如何可能对不同方法用于修改某些协议步骤的说明。

Protocol

所有程序已都获机构的审查委员会,石溪分校。 1.实验装置 注: 拆分带跑步机实验中常用的术语的定义,请参阅 补充文件 1-定义。 屏幕所有与会者的拆分带跑步机的经验。 注: 人已被证明更快适应事先的暴露后,拆分带跑步机 29 , 30。这些人们时间刻度 " 忘记 " 拆分带跑…

Representative Results

在一条分带式跑步机上行走, 最初导致间协调的大不对称。在 10-15 分钟的时间内, 许多这些措施的对称性逐渐恢复。关于运动行走参数在分体式跑步机适应过程中的变化的详细说明已在别处发布8,10。本文主要研究间协调的两种措施: 步长和双支撑时间。步长的计算方法是两英尺 (即, 在侧足上放置?…

Discussion

许多研究表明, 人们在分体式跑步机上调整步态协调以恢复间协调参数 (如步长和双支撑时间) 的对称性。当自然步行条件恢复后, 分带步行, 参与者继续使用适应的步态模式, 导致后遗症, 必须不知道, 以恢复正常步行协调。研究人员主要使用适应率和后效振幅来量化学习这种新的行走模式的能力, 并将这种学习推广到其他的行走环境和任务中。正确解释这些变化的适应率和后效振幅需要仔细遵守的?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作一直由美国心脏协会的科学家发展给予 (#12SDG12200001) E.瓦苏德万供资。R.Hamzey 当前加入是机械工程系,波士顿大学,美国,马萨诸塞州,波士顿。E.柯克当前加入是物理治疗系的麻省总医院卫生专业研究所。

Materials

Split-belt treadmill Woodway The WOODWAY SPLIT-BELT is an advanced gate measurement and analysis tool used for synchronous or asynchronous running/walking. With its unique and innovative dual belt system, the "SPLIT-BELT," provides infinitely variable speed control of each leg independently. Used for gait rehab, the gas-assisted, fully adjusted handrail options provide more room for therapists and patients.
Codamotion CX1 Charmwood Dynamics, Ltd, Leicestershire, UK

Referenzen

  1. Kulagin, A. S., Shik, M. L. Interaction of symmetric extremities during controlled locomotion. Biofizika. 15 (1), 164-170 (1970).
  2. Halbertsma, J. M. The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol Scand Suppl. 521, 1-75 (1983).
  3. Forssberg, H., Grillner, S., Halbertsma, J., Rossignol, S. The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol Scand. 108 (3), 283-295 (1980).
  4. Foth, E., Bassler, U. Leg movements of stick insects walking with five legs on a treadwheel and with one leg on a motor-driven belt. II. Leg coordination when step-frequencies differ from leg to leg. Biol Cybern. 51 (5), 319-324 (1985).
  5. Thelen, E., Ulrich, B. D., Niles, D. Bilateral coordination in human infants: stepping on a split-belt treadmill. J Exp Psychol Hum Percept Perform. 13 (3), 405-410 (1987).
  6. Dietz, V., Zijlstra, W., Duysens, J. Human neuronal interlimb coordination during split-belt locomotion. Exp Brain Res. 101 (3), 513-520 (1994).
  7. Jensen, L., Prokop, T., Dietz, V. Adaptational effects during human split-belt walking: influence of afferent input. Exp Brain Res. 118 (1), 126-130 (1998).
  8. Reisman, D. S., Block, H. J., Bastian, A. J. Interlimb coordination during locomotion: what can be adapted and stored?. J Neurophysiol. 94 (4), 2403-2415 (2005).
  9. Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., Thach, W. T. Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain. 119 (Pt 4), 1199-1211 (1996).
  10. Malone, L. A., Bastian, A. J., Torres-Oviedo, G. How does the motor system correct for errors in time and space during locomotor adaptation?. J Neurophysiol. 108 (2), 672-683 (2012).
  11. Lauziere, S., et al. Plantarflexion moment is a contributor to step length after-effect following walking on a split-belt treadmill in individuals with stroke and healthy individuals. J Rehabil Med. 46 (9), 849-857 (2014).
  12. Mawase, F., Haizler, T., Bar-Haim, S., Karniel, A. Kinetic adaptation during locomotion on a split-belt treadmill. J Neurophysiol. 109 (8), 2216-2227 (2013).
  13. Ogawa, T., Kawashima, N., Obata, H., Kanosue, K., Nakazawa, K. Distinct motor strategies underlying split-belt adaptation in human walking and running. PLoS One. 10 (3), e0121951 (2015).
  14. Roemmich, R. T., Hack, N., Akbar, U., Hass, C. J. Effects of dopaminergic therapy on locomotor adaptation and adaptive learning in persons with Parkinson’s disease. Behav Brain Res. 268, 31-39 (2014).
  15. Betschart, M., Lauziere, S., Mieville, C., McFadyen, B. J., Nadeau, S. Changes in lower limb muscle activity after walking on a split-belt treadmill in individuals post-stroke. J Electromyogr Kinesiol. 32, 93-100 (2017).
  16. Maclellan, M. J., et al. Muscle activation patterns are bilaterally linked during split-belt treadmill walking in humans. J Neurophysiol. 111 (8), 1541-1552 (2014).
  17. Hoogkamer, W., et al. Gait asymmetry during early split-belt walking is related to perception of belt speed difference. J Neurophysiol. 114 (3), 1705-1712 (2015).
  18. Vazquez, A., Statton, M. A., Busgang, S. A., Bastian, A. J. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force. J Neurophysiol. 114 (6), 3255-3267 (2015).
  19. Wutzke, C. J., Faldowski, R. A., Lewek, M. D. Individuals Poststroke Do Not Perceive Their Spatiotemporal Gait Asymmetries as Abnormal. Phys Ther. 95 (9), 1244-1253 (2015).
  20. Jayaram, G., Galea, J. M., Bastian, A. J., Celnik, P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 21 (8), 1901-1909 (2011).
  21. Morton, S. M., Bastian, A. J. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 26 (36), 9107-9116 (2006).
  22. Jayaram, G., et al. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 107 (11), 2950-2957 (2012).
  23. Reisman, D. S., Wityk, R., Silver, K., Bastian, A. J. Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural Repair. 23 (7), 735-744 (2009).
  24. Choi, J. T., Bastian, A. J. Adaptation reveals independent control networks for human walking. Nat Neurosci. 10 (8), 1055-1062 (2007).
  25. Hamzey, R. J., Kirk, E. M., Vasudevan, E. V. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments. Exp Brain Res. 234 (6), 1479-1490 (2016).
  26. Torres-Oviedo, G., Bastian, A. J. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation. J Neurosci. 30 (50), 17015-17022 (2010).
  27. Torres-Oviedo, G., Bastian, A. J. Natural error patterns enable transfer of motor learning to novel contexts. J Neurophysiol. 107 (1), 346-356 (2012).
  28. Vasudevan, E. V., Bastian, A. J. Split-belt treadmill adaptation shows different functional networks for fast and slow human walking. J Neurophysiol. 103 (1), 183-191 (2010).
  29. Malone, L. A., Vasudevan, E. V., Bastian, A. J. Motor adaptation training for faster relearning. J Neurosci. 31 (42), 15136-15143 (2011).
  30. Musselman, K. E., Roemmich, R. T., Garrett, B., Bastian, A. J. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning. Learn Mem. 23 (5), 229-237 (2016).
  31. Yang, J. F., Lamont, E. V., Pang, M. Y. Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans. J Neurosci. 25 (29), 6869-6876 (2005).
  32. Roemmich, R. T., Bastian, A. J. Two ways to save a newly learned motor pattern. J Neurophysiol. 113 (10), 3519-3530 (2015).
  33. Malone, L. A., Bastian, A. J. Age-related forgetting in locomotor adaptation. Neurobiol Learn Mem. 128, 1-6 (2016).
  34. Malone, L. A., Bastian, A. J. Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation. J Neurophysiol. 103 (4), 1954-1962 (2010).
  35. Vasudevan, E. V., Torres-Oviedo, G., Morton, S. M., Yang, J. F., Bastian, A. J. Younger is not always better: development of locomotor adaptation from childhood to adulthood. J Neurosci. 31 (8), 3055-3065 (2011).
  36. Alexander, R. M. Optimization and gaits in the locomotion of vertebrates. Physiol Rev. 69 (4), 1199-1227 (1989).
  37. Vasudevan, E. V., Patrick, S. K., Yang, J. F. Gait Transitions in Human Infants: Coping with Extremes of Treadmill Speed. PLoS One. 11 (2), e0148124 (2016).
  38. Eikema, D. J., et al. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation. Exp Brain Res. 234 (2), 511-522 (2016).
  39. Mukherjee, M., et al. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation. Exp Brain Res. 233 (10), 3005-3012 (2015).
  40. Finley, J. M., Statton, M. A., Bastian, A. J. A novel optic flow pattern speeds split-belt locomotor adaptation. J Neurophysiol. 111 (5), 969-976 (2014).
  41. Long, A. W., Roemmich, R. T., Bastian, A. J. Blocking trial-by-trial error correction does not interfere with motor learning in human walking. J Neurophysiol. 115 (5), 2341-2348 (2016).
  42. Musselman, K. E., Patrick, S. K., Vasudevan, E. V., Bastian, A. J., Yang, J. F. Unique characteristics of motor adaptation during walking in young children. J Neurophysiol. 105 (5), 2195-2203 (2011).
  43. Gordon, C. R., Fletcher, W. A., Melvill Jones, G., Block, E. W. Adaptive plasticity in the control of locomotor trajectory. Exp Brain Res. 102 (3), 540-545 (1995).
  44. Savin, D. N., Tseng, S. C., Morton, S. M. Bilateral adaptation during locomotion following a unilaterally applied resistance to swing in nondisabled adults. J Neurophysiol. 104 (6), 3600-3611 (2010).
  45. Lam, T., Wirz, M., Lunenburger, L., Dietz, V. Swing phase resistance enhances flexor muscle activity during treadmill locomotion in incomplete spinal cord injury. Neurorehabil Neural Repair. 22 (5), 438-446 (2008).
  46. Yen, S. C., Schmit, B. D., Wu, M. Using swing resistance and assistance to improve gait symmetry in individuals post-stroke. Hum Mov Sci. 42, 212-224 (2015).
  47. Lam, T., Anderschitz, M., Dietz, V. Contribution of feedback and feedforward strategies to locomotor adaptations. J Neurophysiol. 95 (2), 766-773 (2006).
  48. Handzic, I., Barno, E. M., Vasudevan, E. V., Reed, K. B. Design and Pilot Study of a Gait Enhancing Mobile Shoe. Paladyn. 2 (4), (2011).
  49. Haddad, J. M., van Emmerik, R. E., Whittlesey, S. N., Hamill, J. Adaptations in interlimb and intralimb coordination to asymmetrical loading in human walking. Gait Posture. 23 (4), 429-434 (2006).
  50. Noble, J. W., Prentice, S. D. Adaptation to unilateral change in lower limb mechanical properties during human walking. Exp Brain Res. 169 (4), 482-495 (2006).
  51. Choi, J. T., Vining, E. P., Reisman, D. S., Bastian, A. J. Walking flexibility after hemispherectomy: split-belt treadmill adaptation and feedback control. Brain. 132 (Pt 3), 722-733 (2009).
  52. Vasudevan, E. V., Glass, R. N., Packel, A. T. Effects of traumatic brain injury on locomotor adaptation. J Neurol Phys Ther. 38 (3), 172-182 (2014).
  53. Reisman, D. S., McLean, H., Keller, J., Danks, K. A., Bastian, A. J. Repeated split-belt treadmill training improves poststroke step length asymmetry. Neurorehabil Neural Repair. 27 (5), 460-468 (2013).
  54. MacLellan, M. J., Qaderdan, K., Koehestanie, P., Duysens, J., McFadyen, B. J. Arm movements during split-belt walking reveal predominant patterns of interlimb coupling. Hum Mov Sci. 32 (1), 79-90 (2013).
  55. Finley, J. M., Long, A., Bastian, A. J., Torres-Oviedo, G. Spatial and Temporal Control Contribute to Step Length Asymmetry During Split-Belt Adaptation and Hemiparetic Gait. Neurorehabil Neural Repair. 29 (8), 786-795 (2015).
  56. Roemmich, R. T., Long, A. W., Bastian, A. J. Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning. Curr Biol. 26 (20), 2707-2716 (2016).
  57. Mawase, F., Shmuelof, L., Bar-Haim, S., Karniel, A. Savings in locomotor adaptation explained by changes in learning parameters following initial adaptation. J Neurophysiol. 111 (7), 1444-1454 (2014).

Play Video

Diesen Artikel zitieren
Vasudevan, E. V., Hamzey, R. J., Kirk, E. M. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation. J. Vis. Exp. (126), e55424, doi:10.3791/55424 (2017).

View Video