Protocols described here allow for the study of the electrical properties of excitable cells in the most non-invasive physiological conditions by employing zebrafish embryos in an in vivo system together with a fluorescence resonance energy transfer (FRET)-based genetically encoded voltage indicator (GEVI) selectively expressed in the cell type of interest.
The protocols described here are designed to allow researchers to study cell communication without altering the integrity of the environment in which the cells are located. Specifically, they have been developed to analyze the electrical activity of excitable cells, such as spinal neurons. In such a scenario, it is crucial to preserve the integrity of the spinal cell, but it is also important to preserve the anatomy and physiological shape of the systems involved. Indeed, the comprehension of the manner in which the nervous system-and other complex systems-works must be based on a systemic approach. For this reason, the live zebrafish embryo was chosen as a model system, and the spinal neuron membrane voltage changes were evaluated without interfering with the physiological conditions of the embryos.
Here, an approach combining the employment of zebrafish embryos with a FRET-based biosensor is described. Zebrafish embryos are characterized by a very simplified nervous system and are particularly suited for imaging applications thanks to their transparency, allowing for the employment of fluorescence-based voltage indicators at the plasma membrane during zebrafish development. The synergy between these two components makes it possible to analyze the electrical activity of the cells in intact living organisms, without perturbing the physiological state. Finally, this non-invasive approach can co-exist with other analyses (e.g., spontaneous movement recordings, as shown here).
İn vivo sistemik bileşen analizi, bilim insanlarının hücresel davranışlarını en güvenilir biçimde araştırmalarını sağlar. İncelenen aktivite, membran voltajı değişikliklerinin uyarılabilir hücreler arasındaki iletişimi yönlendirdiği sinir sisteminde olduğu gibi, hücre-hücre etkileşimlerinden (temaslı ve temassız olmak üzere) büyük ölçüde etkilendiğinde, bu durum özellikle geçerlidir. Bu elektrik sinyalleri tarafından kodlanan bilginin anlaşılması, sinir sisteminin hem fizyolojik hem de hastalık hallerinde nasıl çalıştığı anlamanın anahtarıdır.
En invaziv olmayan fizyolojik koşullarda hücre elektriksel özelliklerini incelemek için yakın zamanda birkaç genetik olarak kodlanmış gerilim göstergesi geliştirilmiştir 1 . Önceki nesiller optik voltaj sensörlerinin (özellikle voltaja duyarlı boyalar) 2 aksine, GEVI'ler bozulmamış sinir sisteminin in vivo analizlerine izin verir veIfadeleri, spesifik hücre tipleri veya popülasyonları ile sınırlanabilir.
Zebra balığı embriyo, GEVI'ye atfedilen büyük potansiyelin avantajlarından yararlanmak için seçilen in vivo "substrat" tır. Aslında, optik netliği ve basitleştirilmiş ve evrimsel olarak korunmuş sinir sistemi sayesinde zebra balığı modeli, bir ağdaki her hücresel bileşenin anlaşılır bir şekilde tanımlanmasına ve manipüle edilmesine olanak tanır. Aslında, FRET tabanlı GEVI Mermaid 3'ün istihdamı, amyotrofik lateral skleroz (ALS) 4'ün zebrafish modelinde spinal motor nöron davranışındaki semptomatik önlemlerin tanımlanmasına yol açtı.
Aşağıdaki canlı organizma protokolü, Mermaid'i nörona spesifik bir şekilde ifade eden bozulmamış zebra balığı embriyolarındaki omurilik motor nöronlarının elektriksel özelliklerini nasıl izleyeceğini açıklamaktadır. Dahası, farmakolojik olarak indüklenen chan'ınBu tür elektriksel özelliklerdeki ges, gelişimin çok erken evrelerinde zebra balığı hareket davranışını karakterize eden stereotipik motor aktivite olan embriyonik spontan sargıların frekansındaki değişikliklerle ilişkilendirilebilir.
Burada sunulan protokol, zebrafish embriyo omurga motor nöronlarının elektriksel özellikleri ile embriyonik gelişimin yaklaşık 17 hpf'sinde görülen ve 24 hpf 10'a kadar uzanan ilk stereotipik motor aktivite olan spontan sarmal davranış arasındaki ilişkiyi keşfetmemizi sağladı.
Yaklaşımımız araştırmacılara, bozulmamış embriyoların sinir sistemini incelemek için geliştirilmiş bir işlevsel ağdaki hücreler arasındaki etkileşimleri…
The authors have nothing to disclose.
The authors would like to thank Simona Rodighiero for her priceless support with the FRET imaging analysis.
Low Melting Point Agarose | Sigma-Aldrich | A9414 |
DMSO | Sigma-Aldrich | W387520 |
Riluzole | Sigma-Aldrich | R116 |
Pfu Ultra HQ DNA polymerase | Agilent Technologies – Stratagene Products Division | 600389 |
T3 Universal primer | Sigma-Aldrich | |
Wizard SV Gel and PCR Clean-Up system | Promega | A9280 |
Universal SmaI primer | Eurofins | |
StrataClone Mammalian Expression Vector System / pCMV-SC blunt vector | Agilent Technologies – Stratagene Products Division | 240228 |
SmaI | New England Biolabs | R0141S |
T4 DNA ligase | Promega | M1801 |
SalI | New England Biolabs | R0138S |
EcoRV | New England Biolabs | R0195S |
35 mm, glass-bottomed imaging dish | Ibidi | 81151 |
forceps | Sigma-Aldrich | F6521 |
Stereomicroscope | Leica Microsystems | M10 F |
Digital camera | Leica Microsystems | DFC 310 FX |
Leica Application Suite 4.7.1 software | Leica Microsystems | |
QuickTime Player, v10.4 | Apple | |
Confocal microscope (inverted) | Leica Microsystems | TCS SP5 |
Microinjector | Eppendorf | Femtojet |
ImageJ macro Biosensor_FRET | ||
GraphPad Prism 6.0c | GraphPad Software, Inc |