Protocols described here allow for the study of the electrical properties of excitable cells in the most non-invasive physiological conditions by employing zebrafish embryos in an in vivo system together with a fluorescence resonance energy transfer (FRET)-based genetically encoded voltage indicator (GEVI) selectively expressed in the cell type of interest.
The protocols described here are designed to allow researchers to study cell communication without altering the integrity of the environment in which the cells are located. Specifically, they have been developed to analyze the electrical activity of excitable cells, such as spinal neurons. In such a scenario, it is crucial to preserve the integrity of the spinal cell, but it is also important to preserve the anatomy and physiological shape of the systems involved. Indeed, the comprehension of the manner in which the nervous system-and other complex systems-works must be based on a systemic approach. For this reason, the live zebrafish embryo was chosen as a model system, and the spinal neuron membrane voltage changes were evaluated without interfering with the physiological conditions of the embryos.
Here, an approach combining the employment of zebrafish embryos with a FRET-based biosensor is described. Zebrafish embryos are characterized by a very simplified nervous system and are particularly suited for imaging applications thanks to their transparency, allowing for the employment of fluorescence-based voltage indicators at the plasma membrane during zebrafish development. The synergy between these two components makes it possible to analyze the electrical activity of the cells in intact living organisms, without perturbing the physiological state. Finally, this non-invasive approach can co-exist with other analyses (e.g., spontaneous movement recordings, as shown here).
في الجسم الحي التحليل المكوني يسمح العلماء للتحقيق في السلوك الخلوي في الطريقة الأكثر موثوقية. هذا صحيح بشكل خاص عندما يتأثر النشاط تحت التدقيق بشكل كبير من التفاعلات خلية الخلية (على حد سواء الاتصال وغير تعتمد على الاتصال)، كما هو الحال في الجهاز العصبي، حيث التغييرات غشاء الجهد يدفع التواصل بين الخلايا المنكوبة. إن فهم المعلومات المشفرة بواسطة هذه الإشارات الكهربائية هو المفتاح لفهم الطريقة التي يعمل بها الجهاز العصبي في كل من الحالات الفسيولوجية والمرضية.
من أجل دراسة الخواص الكهربائية الخلية في معظم الحالات الفسيولوجية غير الغازية، وقد وضعت مؤخرا عدة مؤشرات الجهد المشفرة وراثيا 1 . على عكس الأجيال السابقة من أجهزة الاستشعار الجهد البصري (أساسا أصباغ حساسة للجهد) 2 ، جيفيس تسمح لفي الجسم الحي تحليلات للنظام العصبي سليمة، ويمكن أن يقتصر التعبير على أنواع محددة من الخلايا أو السكان.
الجنين الزرد هو في الجسم الحي "الركيزة" من خيار للاستفادة من إمكانات كبيرة تعزى إلى جيفيس. في الواقع، وبفضل وضوحها البصري ونظامها العصبي المبسط بعد التطورية، فإن نموذج الزرد يسمح بالتعرف المباشر والتلاعب لكل مكون خلوي في الشبكة. في الواقع، أدى استخدام جريت مرميد القائم على حفرة 3 إلى تحديد التعديلات قبل الأعراض في السلوك العصبي الحركي في العمود الفقري في نموذج الزرد من التصلب الجانبي الضموري (ألس) 4 .
وفيما يلي في بروتوكول الجسم الحي يصف كيفية مراقبة الخصائص الكهربائية من الخلايا العصبية الحركية في العمود الفقري الأجنة الزرد سليمة معربا عن حورية البحر بطريقة محددة الخلايا العصبية. وعلاوة على ذلك، فإنه يوضح كيف تشان الدوائية التي يسببهاجيس في هذه الخصائص الكهربائية يمكن أن تترافق مع التعديلات في وتيرة لفائف عفوية الجنينية، والنشاط النمطي الحركي الذي يميز سلوك حركة الزرد في المراحل المبكرة جدا من التنمية.
بروتوكول عرضت هنا يسمح لنا لاستكشاف العلاقة بين الخصائص الكهربائية من الخلايا العصبية الحركية الجنين العمود الفقري الزرد والسلوك الالتفافية عفوية، وأقرب النشاط الحركي النمطية، والذي يظهر حوالي 17 هف من التطور الجنيني ويستمر حتى 24 هف 10 .
<p class="jove_content" s…The authors have nothing to disclose.
The authors would like to thank Simona Rodighiero for her priceless support with the FRET imaging analysis.
Low Melting Point Agarose | Sigma-Aldrich | A9414 |
DMSO | Sigma-Aldrich | W387520 |
Riluzole | Sigma-Aldrich | R116 |
Pfu Ultra HQ DNA polymerase | Agilent Technologies – Stratagene Products Division | 600389 |
T3 Universal primer | Sigma-Aldrich | |
Wizard SV Gel and PCR Clean-Up system | Promega | A9280 |
Universal SmaI primer | Eurofins | |
StrataClone Mammalian Expression Vector System / pCMV-SC blunt vector | Agilent Technologies – Stratagene Products Division | 240228 |
SmaI | New England Biolabs | R0141S |
T4 DNA ligase | Promega | M1801 |
SalI | New England Biolabs | R0138S |
EcoRV | New England Biolabs | R0195S |
35 mm, glass-bottomed imaging dish | Ibidi | 81151 |
forceps | Sigma-Aldrich | F6521 |
Stereomicroscope | Leica Microsystems | M10 F |
Digital camera | Leica Microsystems | DFC 310 FX |
Leica Application Suite 4.7.1 software | Leica Microsystems | |
QuickTime Player, v10.4 | Apple | |
Confocal microscope (inverted) | Leica Microsystems | TCS SP5 |
Microinjector | Eppendorf | Femtojet |
ImageJ macro Biosensor_FRET | ||
GraphPad Prism 6.0c | GraphPad Software, Inc |