Summary

游离组织移植的模型:鼠上腹部游离皮瓣

Published: January 15, 2017
doi:

Summary

This paper describes the steps required to raise a fasciocutaneous epigastric free flap and transfer it to the neck in the rat.

Abstract

Free tissue transfer has been increasingly used in clinical practice since the 1970s, allowing reconstruction of complex and otherwise untreatable defects resulting from tumor extirpation, trauma, infections, malformations or burns. Free flaps are particularly useful for reconstructing highly complex anatomical regions, like those of the head and neck, the hand, the foot and the perineum. Moreover, basic and translational research in the area of free tissue transfer is of great clinical potential. Notwithstanding, surgical trainees and researchers are frequently deterred from using microsurgical models of tissue transfer, due to lack of information regarding the technical aspects involved in the operative procedures. The aim of this paper is to present the steps required to transfer a fasciocutaneous epigastric free flap to the neck in the rat.

This flap is based on the superficial epigastric artery and vein, which originates from and drain into the femoral artery and vein, respectively. On average the caliber of the superficial epigastric vein is 0.6 to 0.8 mm, contrasting with the 0.3 to 0.5 mm of the superficial epigastric artery. Histologically, the flap is a composite block of tissues, containing skin (epidermis and dermis), a layer of fat tissue (panniculus adiposus), a layer of striated muscle (panniculus carnosus), and a layer of loose areolar tissue.

Succinctly, the epigastric flap is raised on its pedicle vessels that are then anastomosed to the external jugular vein and to the carotid artery on the ventral surface of the rat’s neck. According to our experience, this model guarantees the complete survival of approximately 70 to 80% of epigastric flaps transferred to the neck region. The flap can be evaluated whenever needed by visual inspection. Hence, the authors believe this is a good experimental model for microsurgical research and training.

Introduction

游离组织移植在临床实践中越来越多地用于自20世纪70年代重建1-5缺少组织。这使得从摘除肿瘤,外伤,感染,畸形或烧伤1-7造成复杂,否则无法治愈的缺陷重建。这种自由折翼是用于重构高度复杂的解剖区域,如那些在头部和颈部,手,脚的,和会阴1,4-特别有用。

然而,即使在今天的外科研修生经常受到的参与提高,传输和insetting一个游离皮瓣与利用显微外科技术和仪器8,9几个步骤的复杂性吓倒。此外,它已被广泛接受,要成为一个精通microsurgeon,在动物模型中广泛的实验的做法是强制4,8-13。

此外,基础和转化研究在自由组织转移的面积是重要的临床潜力8,14-16。尽管如此,研究人员经常利用组织移植显微车型由于对参与手术方案4,8-14技术方面缺乏信息却步。鼠是显微研究和培训一个很好的动物模型,因为它是相对便宜,容易保存,并且适合频繁操作8,11,13,14,17,18。

虽然几个自由骨骼,肌肉和皮肤护翼已在大鼠18-24了说明,但游离胃脘皮瓣是最广泛使用的用于教学目的9,12,13,18,25。该游离皮瓣最早是在1967年由蟾蜍和Murray描述,并从此得到了越来越多的人气,由于多种因素,即不变血管解剖,相对容易清扫,相当大的营养血管和皮肤的冗余供体区,WHICH允许从瓣的高度4,9-11,13,17,18,25-28造成的缺陷缝合。

皮瓣解剖学和组织学
胃脘皮瓣由腹壁浅动脉和静脉( 图1)提供。这些船只发源于分别排入股动脉和静脉。上平均的腹壁浅静脉的口径为0.6〜0.8毫米,0.3到0.5毫米腹壁浅动脉的对比( 2)17,18。浅腹壁下动脉散发出的两个主要分支:横向和内侧支,反过来分裂多次,这源于供应的大部分地区上腹部的体壁的毛细血管网络。这些毛细管流入具有平行当然到动脉树( 2)13,17,18的腹壁浅静脉的支流。 图3重图通过介绍可以在腹部皮瓣进行动员腹壁浅血管供应腹外侧腹壁的区域。此翼片可高达5厘米长3厘米,宽13,17,18。

组织学上,翼片由覆盖所述腹腹壁肌肉 4)13,17,18外皮的。它含有皮肤的表面层,由真皮和表皮形成。下方的皮肤有一个名为脂膜adiposus脂肪组织层。下面这一层有称为肉膜 18,28,29横纹肌另一层。下面的肉膜有松动乳晕组织是肤浅覆盖更大的腹部肌肉的深筋膜。因此,护翼是组织的复合块,包含所有这些层,除了深肌肉筋膜( 5)13,17,18,27-31。

Protocol

所有涉及动物对象的程序是由机构动物护理和使用委员会和道德委员会在诺瓦大学医学院,里斯本,葡萄牙(08/2012 / CEFCM)的批准。 1.手术过程建立的注意事项使用成年Wistar大鼠体重250至350g。 保持大鼠用手术前7天12小时明暗周期的食物和水随意 。 称量大鼠,以确定麻醉剂的需要量。 术前高压灭菌所有的手术器械。 布局所有的手术用品和仪器所需程序(见材料表)。 执行使用常规和显微外科器械在手术显微镜下的手术。 在恒温毯,直肠探头和热灯位置。 放置装有0.9%的盐水中的水浴温热一个20毫升灭菌小瓶37ºC。 戴上手套,消毒消毒工作设置的所有表面用的酒精溶液。取下手套。 放置磨砂帽和口罩。 手消毒用水和肥皂和磨损另一对消毒手套。 穿无菌手术衣。 2.麻醉和皮肤准备注意:有以下四个步骤助手的帮助下,为无菌长袍和手套磨损。 麻醉用腹腔给予氯胺酮和地西泮的混合物大鼠。剂量为5mg / kg的氯胺酮和0.25毫克/千克安定。由脚趾捏和呼吸速率的遵守在整个过程8,14,15,32判断麻醉深度。 适用的眼用凝胶在眼睛的前表面,以避免角膜擦伤。 带脱毛霜去除毛发上腹部的腹面。头发祛瘀后人,取出用温生理盐水的脱毛霜。 喷洒过手术部位醇溶液的大量。留在手术部位的产品,不要擦掉。至少等待15秒。重复应用程序3次。在手术前应至少留出2分钟的接触时间。其他研究单位所使用的协议,以防止手术部位感染。 穿着灭菌手套,放置2手术单对大鼠的两侧。 3.供区手术过程 设置腹壁皮瓣的长度范围大约5厘米和3厘米宽的界限。 使用手术皮肤标记,绘制从胸骨到耻骨联合剑突一条线,以纪念在老鼠的腹部腹面正中线。 在左侧的大鼠的,使用外科皮肤标记,画两条垂直线的第一行:上È渡立即尾椎胸廓,另一个平行于后者,只是颅至腹股沟倍( 图3和6)。 标记与平行于中线和周围3厘米除了它的线的外科皮肤标记的横向切口。 皮瓣收获 切开以数字15手术刀刀片的皮肤直到到达肉膜层。 更深到肉膜平面,使具有电烧灼的切口,直至到达肌肉筋膜。 从内侧到外侧抬高瓣和颅尾,露出皮瓣的蒂。 仔细结扎和划分穿支血管从深层肌肉层来了,并进入瓣的深面。 将卷收器皮瓣的尾部方面,并轻轻挑逗谨慎解剖皮瓣的蒂远松散周围组织( 图7)。 结扎和划分旋股外侧动脉,静脉使用9/0尼龙的连字。 隔离股动脉和静脉。如果存在,结扎(用9/0尼龙),并把这些血管的分支到邻近的肌肉。 首先,使用双血管钳夹住股静脉的近端部分。随后夹住其远端的方面。然后,夹紧股动脉的远侧方面,最后其近端的方面。 夹紧股动脉的远侧方面,最后其近端的方面。 放置在腹壁浅静脉单一血管钳,另一个在腹壁浅动脉。用一双直显微剪刀切开腹壁浅动脉和静脉的起源和终结,分别。 丰富地浇灌这些船只与肝素生理盐水10 IU / ml的管腔,直至无血或碎片看到船只的管腔33的内部。 拉和修剪外膜靠近血管部分站点的袖口。 使用阿狄森氏钳( 图8)转移上腹瓣的脖子。 关闭供区表皮下中断5/0可吸收缝线。 关闭间断5/0尼龙缝合皮肤。 4.受区手术过程 受区血管曝光 使用手术皮肤标记,划一条线,在左胸锁乳突肌(SCM)肌内侧缘。 使用外科皮肤标记,画另一条线立即颅和平行于左锁骨。这两行必须在左侧胸锁关节收敛。 切割用数字15手术刀刀片在皮肤上。 使用电烧灼通过subcutaneou切小号组织。 用一双解剖剪刀缩略颈外静脉横向到SCM的肌肉。 隔离并结扎颈外静脉的支流在此( 图9)。 结扎只是用9/0尼龙缝线下颌骨低于外部颈静脉。 放置后者结扎下方的单个静脉夹具和切外部颈静脉使用一对直显微剪刀。 洗用肝素化生理盐水静脉的腔中的10IU / ml的浓度。 隔离单片机肌肉的内侧缘和横向缩回此肌肉,从而暴露颈动脉和迷走神经( 图10)。 使使用电烧灼的胸锁乳突肌的中间三分之一横切口。 放置在胸锁乳突肌的深面和带状肌之间的牵引器。 从颈挑逗走迷走神经动脉,注意不要损坏这些结构。 血管吻合 定位在颈动脉中的双动脉夹钳。 放置一个9/0尼龙缝合在颈动脉的外侧面,并使用该线迹拉血管壁的这一部分。 用一双直显微剪刀的生产在血管壁的这个区域的开口。 采用间断10/0尼龙缝合线进行皮瓣的腹壁浅动脉,并在最近创建的颈动脉对外开放水平的颈动脉之间的termino外侧吻合。 接近颈外静脉近端残端和腹壁浅静脉和检查这两个静脉的口径。 如果在规模上差异是轻度到中度,用扩张钳扩张的腹壁浅静脉切割端的内腔。 如果口径差异非常PRONounced,除了镊子扩张,斜面的腹壁浅静脉的端部在30至45°角。 执行静脉吻合,采用间断11/0尼龙缝合。 取下放置在皮瓣的血管单夹。 除去定位在股静脉的双重夹。 除去放置在股动脉的双重夹。 评估吻合的通畅和能力 验证如果折翼的动脉和静脉完全扩张并没有显著出血除去血管夹( 图11)的3分钟后观察。 如果在此期间出血放在潮湿的盐水纱布在吻合,并应用温和的压力。 如果从吻合出血3分钟后没有停止,增加额外的11/0尼龙线间断缝合后,血管钳的位置,根据需要。 等待10分钟,连接到颈部血管并通过在温盐水浸湿的纱布包裹襟翼。 评估皮瓣的灌注和颈部的伤口止血。检查是否有出血,血栓形成或过度牵拉的迹象吻合。 在固定接收站点瓣开始5/0表皮下间断缝合。 关闭与5/0尼龙线间断缝合皮肤( 图12)。 5.术后护理离开老鼠在右侧卧位它的各个笼子里进行恢复。通过将电热垫低设置下保持笼温暖。放置笼和电热垫,以避免高温之间的光布。 观看动物连续它转动到相对卧位每隔5分钟,直到其恢复胸骨斜卧并且它能够走动。 众议院单独的老鼠,直到去除T他开刀拆线的手术后两个星期。 得到抗炎药1毫克/千克皮下注射一次手术后3天,每天,术后镇痛。 6.皮瓣评估呈现食物治疗过的大鼠的头和通过目测评估皮瓣的存活率。 如果曝光使用以前的步骤是不够的,有一个助手施加轻柔触摸过的大鼠的肩胛间区,在检查的襟翼。 使用数码摄影和ImageJ的软件来定量评估伤口裂开,襟翼表皮松解,充血,拥塞和/或坏死的区域,如由略等进行详细说明。 15。

Representative Results

根据使用上腹部游离皮瓣作为无论是在显微课程的背景和用于研究目的的游离组织移植模型的作者“十余年的经验,皮瓣成活率一定程度上取决于外科医生的灵巧和经验。一般来说,如果上述的技术方面的考虑,一个几乎完整的存活率(<皮瓣坏死的10%)的70%左右折翼是可以预期的。折翼的有10%左右呈现部分坏死(10至50%)。大约20%的襟翼遭受完全坏死。在由第一作者(DC)( 图13)执行的最后20程序得到80%的几乎完全的存活率。 在头两天术后,自由上腹瓣往往是水肿,存在一定程度的静脉淤血。这些通常机器人^ h消退天手术后逐渐5之间3。通常情况下,在第一周,大鼠去除大部分外部针和缝合表皮下的一部分,往往造成轻微的伤口裂开的分散地区( 图14)。 10天后,头发慢慢开始瓣表面上生长。在第一个月的手术结束后,皮瓣通常是覆盖着头发比邻近皮肤略短。两个月后,翼片的存在是通过轻微块状预示,并通过围绕襟翼的边缘相对不显眼的疤痕( 图14)。皮瓣自动吃人肉是一个罕见的发现,在作者的经验,出现几乎完全共皮瓣坏死的病例。 图 1: 胃脘免费FLA的血管解剖页。 该照片示出了先前用在动脉系统中的红色胶乳溶液并与在静脉系统中的蓝色胶乳溶液注射的大鼠的左腹部区域。能够观察到胃脘区域接收从腹壁浅动脉和静脉的轴向的血液供应。这些船只发源于分别排入股动脉和静脉。 请点击此处查看该图的放大版本。 图 2: 腹壁浅血管的铸型显示微观血管供血腹部游离皮瓣的扫描电子显微镜图像。 所述superfi的铸型的该扫描电子显微镜的图像的大鼠的官方胃脘船只表明静脉具有较大口径的动脉。上平均的腹壁浅静脉的口径为0.6〜0.8毫米,0.3到0.5毫米腹壁浅动脉的比较。这个图像还示出了腹壁浅动脉起​​源两个主要分支:横向和内侧分支反过来分割多次,始发该提供大部分胃脘区域的毛细管网络。这些毛细血管流入具有平行的过程中动脉树的腹壁浅静脉的支流。 请点击此处查看该图的放大版本。 图3:在大鼠左上腹游离皮瓣的潜在领域。 此图repre货物内由腹壁浅血管供应的腹壁的地区,可在上腹部皮瓣被调动起来。此翼片可高达5厘米长和3厘米的宽度。 请点击此处查看该图的放大版本。 图4: 胃脘瓣的苏木精-伊红染色切片的照片。 上腹区的这苏木 – 伊红染色部分显示了上腹部皮瓣是由这个区域覆盖腹壁肌肉的珠被。 请点击此处查看该图的放大版本。 <p class="jove_content" fo:keep-together.within-page="“1”"> 图 5: 上腹部皮瓣组织学组成。 左侧照片表示腹壁襟翼的苏木精 – 伊红染色的部分,而从该翼片的Masson三色部分获得在右侧的照片。这两张照片说明的大鼠的腹部翼片是组织的复合块。它含有皮肤的表面层,由真皮和表皮形成。下方的皮肤有一个名为脂膜adiposus脂肪组织层。下面这一层有称为肉膜横纹肌层。下面的肉膜有一个深筋膜覆盖更大和更深的腹部肌肉。 请点击此处查看该图的放大版本。 图 手术前的大鼠的腹侧表面上 6. 手术前皮肤斑纹。 这张照片示出了皮肤标记为用于提高左腹部翼片,并随后在左颈部区域的腹侧插图此襟翼的切口。 图7. 在手术显微镜(放大10倍)下腹部皮瓣的营养血管外科解剖。 这张照片显示了腹壁浅动脉和静脉源自分别排入股动脉和静脉。旋股外侧动脉通常来源于浅层外延的尾部方面胃动脉。旋股外侧静脉也有类似的路径,通常终止到腹壁浅静脉。 请点击此处查看该图的放大版本。 图 8. 腹部皮瓣 体外 蒂在其营养血管(在腹壁浅动脉和静脉 – A,V,分别)。 请点击此处查看该图的放大版本。 图9.的操作观点收件人静脉,即,外部颈静脉,在颈部(10倍倍率)的左侧的清扫。 是可能的颈外静脉侧的皮下过程观察到胸锁乳突肌。 请点击此处查看该图的放大版本。 图10. 施主动脉,即颈总的清扫的操作图,在颈部(10倍倍率)的左侧。 动脉和相应的迷走神经的回缩胸锁乳突肌与舌骨下肌肉暴露后,如图所示。 请点击此处查看T的放大版本。他的身影。 图11. 照片襟翼的容器和在所述颈部的收件人血管之间血管吻合的,在手术显微镜(10倍放大率)下所看到。 这张照片显示的颈总动脉和腹壁浅动脉之间的termino外侧吻合。另外,也可以观察腹壁浅和外部颈静脉之间的termino末端吻合。 请点击此处查看该图的放大版本。 图12. 照片鼠immedi腹方面 ately后手术。 请注意,供体区主要轻松关闭。 请点击此处查看该图的放大版本。 在连续的20只 图13. 上腹游离皮瓣存活由第一作者(DC)上操作。 五只(20%)提出了完整的皮瓣坏死(例1,4,8,13日和15日,由红点表示)。使用自由软件ImageJ的测定皮瓣坏死区,如由略等进行详细说明。 15。 请点击此处查看该图的放大版本。 14“SRC =”/文件/ ftp_upload / 55281 / 55281fig14.jpg“/> 图14 放置在颈部的腹侧术后4,14和60天胃脘襟翼的照片。 手术后四天,有典型的一些切口裂开,如大鼠移除针。然而,翼片通常保持在原位。有可能通过简单的目视检查每日检查襟翼。 请点击此处查看该图的放大版本。

Discussion

The most important aspect to obtain consistent flap survival is paying attention to detail in various steps of the microsurgical technique. For example, to obtain good visualization of the vessels, of the surgical instruments and of the fine suture lines, it is very helpful to place underneath the vessels, a sterilized colored plastic background. As many researchers, we prefer to use sterilized fragments of yellow or green balloons (Figures 7 and 11). This background provides the additional advantage of minimizing adherence of suture lines to the adjacent structures, which sometimes leads to the need of pulling the suture line with too much tension, which may in turn lead to vascular tearing. Finally, the use of a background has the additional advantage of decreasing the probability of inadvertently dragging potential thrombogenic tissue debris to the anastomosis site.

Considering that the flap’s vessels are very fine and fragile, it is important not to pinch the entire width of the vessels, in order to avoid intimal lesion that, in turn, will lead to intravascular thrombosis and flap failure. To prevent inadvertent injury to both the flap’s vessels and to the recipient site’s vessels, it is safer to liberally ligate and divide neighboring tributaries, which will allow an easier manipulation of these vessels.

Before starting the anastomoses, it is vital to place the vessels in their definitive position, striving to prevent vascular kinking or torsion of the flap’s pedicle. Given the small caliber and delicate consistency of the vessels, these are often difficult to exclude unequivocally. One helpful trick is to secure the flap in its final position with 3 stitches placed away from the site of the anastomoses. Next, if in doubt, temporarily open the vascular clamps placed at the flap’s pedicle, and fill the vessels’ lumen with heparinized normal saline in a concentration of 10 IU/mL until they become engorged. This leads vessels to assume the configuration they will present after being perfused by blood, as when the clamps are removed after anastomoses completion.

Moreover, it is of paramount importance to detect any air bubbles, even if small, inside the vessels during the entire procedure and particularly before tying the final stitches. If these bubbles are distant from the vascular section, the vessels can be milked gently with microsurgical forceps. If they are located close to the anastomotic sites, simple irrigation leads the less dense bubbles to be easily expelled from the vascular lumen. Failure to acknowledge the presence of air bubbles can cause irreversible flap ischemia and necrosis, no doubt due to the fine caliber of the flap vessels.

Additionally, it cannot be overemphasized the need for meticulous care while passing and tying the stitches, in order to: include the three layers of the vessels (intima, media and adventitia); obtain good vessel eversion to ensure adequate intimal contact, which is vital to anastomosis sealing and endothelial regrowth; avoid loose vascular contact, which will result in anastomotic incompetence, i.e., bleeding; and avoid grabbing too much vascular tissue, which will lead to anastomosis stenosis and proclivity to thrombosis, which in turn will result in venous congestion or poor flap perfusion, if the vein or artery are involved, respectively.

Finally, it is essential to ensure perfect hemostasis, during the entire procedure, especially when raising the flap in its deep surface. Otherwise hematoma formation and rat death are likely to ensue.

Modifications and troubleshooting of the technique

The authors observed that making a transverse incision in the middle portion of the SCM using an electric cautery, not only allows a better exposure of the carotid artery, but also minimizes the risk of undue tension over the future arterial anastomosis.

Another important technical tip is to start the anastomosis from the vessels’ back wall, in order to minimize the risk of unwillingly catching this wall when placing the stitches in the more easily exposed front wall. If the back wall is sutured to the anterior aspect of the anastomosis, lack of vascular patency will almost invariably result either immediately due to mechanical reasons or after only a few hours as a result of thrombosis8.

If the anastomoses of the epigastric vessels of the rat are considered too technically challenging due to the small caliber of these vessels, the femoral vessels can be ligated distal to the origin of the epigastric vessels and used as the vascular pedicle of the epigastric flap. In this way, larger vessels will be used (the femoral artery has a caliber of 1.0 to 1.2 mm; and the femoral vein has a caliber of 1.2 to 1.5 mm). Moreover, by dissecting and ligating the other tributaries of the femoral vessels, a vascular pedicle length of over 2 cm can be obtained, which will facilitate flap insetting18,34,35.

Reproducibility

Our experience of more than ten years of using this flap for teaching and research purposes strongly suggests that the rat epigastric flap is a reproducible model of free tissue transfer11,13,17,18,26. It can be easily incorporated in microsurgical courses, as it is a good teaching and training model for microsurgery trainees11,13,17,18,26. In our experience, although technically challenging in the beginning for the novice in microsurgery, after some training, the free epigastric flap can be successfully transferred to the neck of the rat with minimal to no subsequent necrosis in 70 to 80% of cases. These results concur with those generally reported in the literature13,18,36.

Significance with respect to existing methods

Numerous free flaps have been described in the rat10,16,18,37-39. The most commonly used for teaching and research purposes have been the transverse rectus abdominis myocutaneous flap, the latissimus dorsi and serratus anterior muscle flaps, the hind limb replantation model, and the epigastric (groin) flap18,35. These flaps have been favored, due to their consistent anatomy and sizeable vascular pedicle. The epigastric flap is arguably the one associated with lesser donor site morbidity, as it dissected above the muscle fascia18. Moreover, the epigastric flap, described in 1967, was the first flap to be described in rats34,35. This occurred only 4 years after the first description of an experimental flap in an animal by Goldwyn. Interestingly, this flap was a groin flap in the dog34.

Limitations of the technique

The two main limitations of this model are the need for microsurgical skills in order to carry out the surgery, and the presence of significant necrosis in 20 to 25% of cases, according to different authors13,18,36. Another potential limitation of the model herein presented is the auto cannibalism of the flap. However, as the authors above, this is an infrequent finding that almost only occurs in cases of total flap necrosis.

Future applications of the technique

The rat epigastric free flap can be used in experimental studies of tissue perfusion, tissue repair and surgical wound infection40,41. Its nutrient vessels are particularly suitable for intravascular injection of solutions containing substances of interest, namely drugs, viral vectors or liposomes, that will mostly produce a local or regional effect30,31. In addition, beneath the flap, pathogens, foreign bodies, radioactive seeds or chemicals can also be placed, mimicking several disease processes and potential treatments30,31.

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者之一(迪奥戈卡萨尔)收到的资助从程序的高级医学教育,这是由FundaçãoCalouste Gulbenkian博物馆,FundaçãoChampalimaud,DA部:ËSAUDE对Fundação一个西恩西亚ËTECNOLOGIA,葡萄牙赞助。

笔者想感谢阿尔贝托·塞韦里诺先生的技术帮助,在拍摄和编辑视频。作者也感谢奥克塔维奥Chaveiro先生,马可·科斯塔先生和卡洛斯·洛佩斯先生为筹备在本文所提出的动物标本帮助。

最后,作者要感谢Gracinda梅内塞斯女士的帮助,所有与动物的采集和维护的后勤方面。

Materials

Skin Skribe Surgical Skin Marker Moore Medical 31456 https://www.mooremedical.com/index.cfm?/Skin-Skribe-Surgical-Skin-Marker/
&PG=CTL&CS=
HOM&FN=ProductDetail&
PID=1740&spx=1
Micro retractor Fine Science Tools RS-6540 http://www.finescience.de
Graeffe forceps 0.8 mm tips curved Fine Science Tools 11052-10 http://www.finescience.de
Acland clamps Fine Science Tools 00398 V http://www.merciansurgical.com/aclandclamps.pdf
Clamp applicator Fine Science Tools CAF-4 http://www.merciansurgical.com/acland-clamps.pdf
High-Temperature Cautery Fine Science Tools AA03 http://www.boviemedical.com/products_aaroncauteries_high.asp
Micro-vessel dilators 11 cm 0.3 mm tips 00124 Fine Science Tools D-5a.2 http://www.merciansurgical.com
Micro Jewellers Forceps 11cm angulated 00109 Fine Science Tools JFA-5b http://www.merciansurgical.com
Micro Jewellers Forceps 11 cm straight 00108 Fine Science Tools JF-5 http://www.merciansurgical.com
Acland Single Clamps B-1V (Pair) Fine Science Tools 396  http://www.merciansurgical.com
Micro Scissors Round Handles 15 cm Straight Fine Science Tools 67  http://www.merciansurgical.com
Iris Scissors 11.5 cm Curves EASY-CUT Fine Science Tools EA7613-11  http://www.merciansurgical.com
Mayo Scissors 14 cm Straight Chamfered Blades EASY-CUT Fine Science Tools EA7652-14  http://www.merciansurgical.com
Derf Needle Holders 12 cm TC Fine Science Tools 703DE12  http://www.merciansurgical.com
Monosyn 5-0 B.Braun 15423BR http://www.mcfarlanemedical.com.au/
15423BR/
SUTURE-MONOSYN-5_or_0-16MM-70CM-(C0023423)-BOX_or_36/pd.php
Ethilon 5-0 Ethicon W1618 http://www.farlamedical.co.uk/category_Ethilon-Suture-1917/Ethilon-Sutures/
Dafilon 10-0 B.Braun G1118099 http://www.bbraun.com/cps/rde/xchg/bbraun-com/hs.xsl/products.html?prid=PRID00000816
Veet Sensitive Skin Hair Removal Cream Aloe Vera and Vitamin E 100 ml Veet http://www.veet.co.uk/products/creams/creams/veet-hair-removal-cream-sensitive-skin/
Instrapac – Adson Toothed Forceps (Extra Fine) Fine Science Tools 7973 http://www.millermedicalsupplies.com
Castroviejo needle holders Fine Science Tools 12565-14 http://s-and-t.ne
Straight mosquito forcep Fine Science Tools 91308-12 http://www.finescience.de
Cutasept F skin disinfectant Bode Chemie http://www.productcatalogue.bode-chemie.com/products/skin/cutasept_f.php
Lacri-lube Eye Ointment 5g Express Chemist LAC101F http://www.expresschemist.co.uk/lacri-lube-eye-ointment-5g.html
Normal saline for irrigation Hospira, Inc. 0409-6138-22 http://www.hospira.com/en/search?q=sodium+chloride+irrigation%2C+usp&fq=contentType%3AProducts
Heparin Sodium Solution (5000IU/ml) B.Braun http://www.bbraunusa.com/products.html?prid=PRID00006982
Meloxicam Metacam Boehringer Ingelheim http://www.bi-vetmedica.com/species/pet/products.html
Heat Lamp HL-1 Harvard Apparatus 727562 https://www.harvardapparatus.com/webapp/wcs/stores/servlet/
haisku3_10001_11051_39108_-1_
HAI_ProductDetail_N_
37610_37611_37613
Homeothermic Blanket System with Flexible Probe Harvard Apparatus 507220F https://www.harvardapparatus.com/webapp/wcs/stores/servlet/
haisku3_10001_11051_39108_-1_
HAI_ProductDetail_N_
37610_37611_37613
Dry heat sterilizer Quirumed 2432 http://www.quirumed.com/pt/material-de-esterilizac-o/esterilizadores
Surgical drapes Barrier 800430 http://www.molnlycke.com/surgical-drapes/
Biogel Surgical Gloves Medex Supply 30465 https://www.medexsupply.com
Operating microscope Leica Surgical Microsystems 10445319 http://www.leica-microsystems.com/products/surgical-microscopes/

Referenzen

  1. Morain, W. D., Mathes, S. J. . Plastic Surgery. 1, 27-34 (2006).
  2. Christoforou, D., Alaia, M., Craig-Scott, S. Microsurgical management of acute traumatic injuries of the hand and fingers. Bull Hosp Jt Dis. 71 (1), 6-16 (2013).
  3. Santoni-Rugiu, P., Sykes, P. J., Santoni-Rugiu, P., Sykes, P. J. . A History of Plastic Surgery. , 79-119 (2007).
  4. Tamai, S., Tamai, S., Usui, M., Yoshizu, T. . Experimental and Clinical Reconstructive Microsurgery. , 3-24 (2003).
  5. Bettencourt-Pires, M. A., et al. Anatomy and grafts – From Ancient Myths, to Modern Reality. Arch Anat. 2 (1), 88-107 (2014).
  6. Casal, D., Gomez, M. M., Antunes, P., Candeias, H., Almeida, M. A. Defying standard criteria for digital replantation: A case series. Int J Surg Case Rep. 4 (7), 597-602 (2013).
  7. Gomez, M. M., Casal, D. Reconstruction of large defect of foot with extensive bone loss exclusively using a latissimus dorsi muscle free flap: a potential new indication for this flap. J Foot Ankle Surg. 51 (2), 215-217 (2012).
  8. Plenter, R. J., Grazia, T. J. Murine heterotopic heart transplant technique. J Vis Exp. (89), (2014).
  9. Pichierri, A., et al. How to set up a microsurgical laboratory on small animal models: organization, techniques, and impact on residency training. Neurosurg Rev. 32 (1), 101-110 (2009).
  10. Klein, I., Steger, U., Timmermann, W., Thiede, A., Gassel, H. J. Microsurgical training course for clinicians and scientists at a German University hospital: a 10-year experience. Microsurgery. 23 (5), 461-465 (2003).
  11. Fukui, A., Tamai, S., Usui, M., Yoshizu, T. . Experimental and Clinical Reconstructive Microsurgery. , 35-43 (2004).
  12. Ad-El, D. D., Harper, A., Hoffman, L. A. Digital replantation teaching model in rats. Microsurgery. 20 (1), 42-44 (2000).
  13. Ruby, L. K., Greene, M., Risitano, G., Torrejon, R., Belsky, M. R. Experience with epigastric free flap transfer in the rat: technique and results. Microsurgery. 5 (2), 102-104 (1984).
  14. Edmunds, M. C., Wigmore, S., Kluth, D. In situ transverse rectus abdominis myocutaneous flap: a rat model of myocutaneous ischemia reperfusion injury. J Vis Exp. (76), (2013).
  15. Trujillo, A. N., Kesl, S. L., Sherwood, J., Wu, M., Gould, L. J. Demonstration of the rat ischemic skin wound model. J Vis Exp. (98), (2015).
  16. Siemionow, M. Z., Siemionow, M. Z. . Plastic and Reconstructive Surgery: Experimental models and research designs. , 3-67 (2015).
  17. Petry, J. J., Wortham, K. A. The anatomy of the epigastric flap in the experimental rat. Plast Reconstr Surg. 74 (3), 410-413 (1984).
  18. Hirase, Y., Tamai, S., Usui, M., Yoshizu, T. . Experimental and Clinical Reconstructive Microsurgery. 6, 111-114 (2004).
  19. Zhang, F., et al. Microvascular transfer of the rectus abdominis muscle and myocutaneous flap in rats. Microsurgery. 14 (6), 420-423 (1993).
  20. Tonken, H. P., et al. Microvascular transplant of the gastrocnemius muscle in rats. Microsurgery. 14 (2), 120-124 (1993).
  21. Miyamoto, S., et al. Free pectoral skin flap in the rat based on the long thoracic vessels: a new flap model for experimental study and microsurgical training. Ann Plast Surg. 61 (2), 209-214 (2008).
  22. Nasir, S., Aydin, A., Kayikcioglu, A., Sokmensuer, C., Cobaner, A. New experimental composite flap model in rats: gluteus maximus-tensor fascia lata osteomuscle flap. Microsurgery. 23 (6), 582-588 (2003).
  23. Coskunfirat, O. K., Islamoglu, K., Ozgentas, H. E. Posterior thigh perforator-based flap: a new experimental model in rats. Ann Plast Surg. 48 (3), 286-291 (2002).
  24. Ozkan, O., et al. A new flap model in rats: iliac osteomusculocutaneous flap. Ann Plast Surg. 47 (2), 161-167 (2001).
  25. Padubidri, A. N., Browne, E. Modification in flap design of the epigastric artery flap in rats–a new experimental flap model. Ann Plast Surg. 39 (5), 500-504 (1997).
  26. Strauch, B., Murray, D. E. Transfer of composite graft with immediate suture anastomosis of its vascular pedicle measuring less than 1 mm. in external diameter using microsurgical techniques. Plast Reconstr Surg. 40 (4), 325-329 (1967).
  27. Green, C. E. . Anatomy of the Rat. First edn. , 124-153 (1968).
  28. Greene, E. C. . Anatomy of the rat. , (1959).
  29. Langworthy, O. R. A morphological study of the panniculus carnosus and its genetical relationship to the pectoral musculature in rodents. Am J Anat. 35 (2), 283-302 (1925).
  30. Popesko, P., Ratjová, V., Horák, J. . A Colour Atlas of the Anatomy of Small Laboratory Animals. 2, 13-104 (1992).
  31. Brown, S. H., Banuelos, K., Ward, S. R., Lieber, R. L. Architectural and morphological assessment of rat abdominal wall muscles: comparison for use as a human model. J Anat. 217 (3), 196-202 (2010).
  32. Harder, Y., et al. Ischemic tissue injury in the dorsal skinfold chamber of the mouse: a skin flap model to investigate acute persistent ischemia. J Vis Exp. (93), e51900 (2014).
  33. Cox, G. W., Runnels, S., Hsu, H. S., Das, S. K. A comparison of heparinised saline irrigation solutions in a model of microvascular thrombosis. Br J Plast Surg. 45 (5), 345-348 (1992).
  34. Gurunluoglu, R., Siemionow, M. Z., Siemionow, M. Z. . Plastic and Reconstructive Surgery: Experimental models and research designs. , 53-62 (2015).
  35. Nasir, S. . Plast Reconstr Surg. , 227-236 (2015).
  36. Parsa, F. D., Spira, M. Evaluation of anastomotic techniques in the experimental transfer of free skin flaps. Plast Reconstr Surg. 63 (5), 696-699 (1979).
  37. Dunn, R. M., Huff, W., Mancoll, J. The Rat Rectus Abdominis Myocutaneous Flap: A True Myocutaneous Flap Model. Ann Plast Surg. 31 (4), 352-357 (1993).
  38. Özkan, &. #. 2. 1. 4. ;., et al. A new flap model in rats: iliac osteomusculocutaneous flap. Ann Plast Surg. 47 (2), 161-167 (2001).
  39. Ozkan, O., Koshima, I., Gonda, K. A supermicrosurgical flap model in the rat: a free true abdominal perforator flap with a short pedicle. Plast Reconstr Surg. 117 (2), 479-485 (2006).
  40. Dorsett-Martin, W. A. Rat models of skin wound healing: a review. Wound Repair Regen. 12 (6), 591-599 (2004).
  41. Ghali, S., et al. Treating chronic wound infections with genetically modified free flaps. Plast Reconstr Surg. 123 (4), 1157-1168 (2009).
check_url/de/55281?article_type=t

Play Video

Diesen Artikel zitieren
Casal, D., Pais, D., Iria, I., Mota-Silva, E., Almeida, M., Alves, S., Pen, C., Farinho, A., Mascarenhas-Lemos, L., Ferreira-Silva, J., Ferraz-Oliveira, M., Vassilenko, V., Videira, P. A., Gory O’Neill, J. A Model of Free Tissue Transfer: The Rat Epigastric Free Flap. J. Vis. Exp. (119), e55281, doi:10.3791/55281 (2017).

View Video