この論文は、炎症の二つの異なる実験モデルにおいて、キーマトリックスメタロプロテアーゼのインビボ活性を視覚化するために活性化光イメージングプローブを用いた蛍光イメージングの応用について説明します。
この論文では、炎症の2つの異なるマウスモデル:慢性関節リウマチ(RA)および接触(慢性関節リウマチ) におけるin vivo蛍光イメージング(OI) を介して 、活性化可能な蛍光プローブによるマトリックスメタロプロテイナーゼ(MMP)活性を画像化するための非侵襲的方法を記載する。過敏反応(CHR)モデル。近赤外(NIR)ウィンドウ(650〜950nm)の波長を持つ光は、650nm未満の波長に比べて、より深い組織浸透と最小限の信号吸収を可能にします。蛍光OIを用いることの主な利点は、異なる動物モデルで安価で、迅速かつ容易に実施できることである。
活性化可能な蛍光プローブは、それらの不活性化状態では光学的にサイレントであるが、プロテアーゼによって活性化されると高度に蛍光性になる。活性化されたMMPは、組織破壊をもたらし、遅延型過敏症反応(DTHR)(例えば、RAおよびCHR)における疾患の進行にとって重要な役割を果たす。さらに、MMPは、キー軟骨および骨の分解のためのプロテアーゼおよび炎症性サイトカインに応答して、マクロファージ、線維芽細胞や軟骨細胞によって誘導されます。ここでは、MMP-2のようなキーのMMPによって活性化されたプローブ、-3、-9および-13を使用して、同様に6日間の疾患誘導後RAおよび対照マウスにおけるMMP活性の近赤外蛍光OIのための撮影プロトコルを記述する急性(1Xチャレンジ)と健康の耳に比べ右耳の慢性(5倍の挑戦)CHRを持つマウスのように。
関節リウマチ(RA)または尋常性乾癬などの自己免疫疾患は、遅延型過敏症反応(DTHR)として分類される。 RAは、びらん性滑膜炎および関節破壊によって特徴付けられる一般的な自己免疫疾患である。炎症細胞の浸潤と増殖、炎症細胞の発現の増加がパンヌス形成、軟骨および骨破壊をもたらすことを実証している2。マトリックスメタロプロテイナーゼ(MMPs)によるコラーゲンなどの細胞外マトリックス分子の切断は、組織の変換や血管新生に不可欠であり、組織の破壊を引き起こす。 5、6接触過敏反応(CHR)は、酸化的バーストをもたらす好中球の凝集によって特徴付けられる。 RAと同様に、CHRのMMPはインボルブ慢性炎症を確立するために、組織変換、細胞移動および血管新生に供される。
RAを調べるために、グルコース-6-リン酸イソメラーゼ(GPI) – 血清注入マウスモデルを使用した。 GPIに対する抗体を含有するトランスジェニックK / BxNマウスの血清をナイーブBALB / cマウスに注射した後、GPI血清注入後6日目に最大24時間以内にリウマチ性炎症が発生し始めた(1.1参照)。慢性CHRを分析するために、C57BL / 6マウスを腹部のトリニトロクロロベンゼン(TNCB)で感作した。右耳に感作後1週間目から5回までチャレンジした(1.1および1.2も参照)。
非侵襲的小動物OIは、前臨床研究で主に使用されている蛍光、化学発光および生物発光シグナルの生体内調査に基づく技術である。得られた半定量的データは、分子健康な器官および組織におけるウラル機構ならびに罹患実験動物モデル、及び縦フォローアップ測定値( 例えば 、インビボでの治療的応答プロファイルを評価するため)を可能にします。縦断的研究の大きな利点は、同じ動物ではなく、時点ごとに異なるマウスを用いて、いくつかの時点でフォローアップ試験で測定することができるように、動物の数が減少することです。 OIの解像度は、臓器の詳細な機能イメージングおよび実験動物におけるさらに小さな組織構造を可能にします。
狭い透過スペクトルを持つ特定の励起および発光フィルタの使用、遮光「暗箱」と-70℃に多くの装置で冷却された敏感な電荷結合素子(CCD)カメラ、によって散乱された光に対する保護、蛍光シグナルの高度に特異的かつ高感度な測定が可能となります。
excitation-と蛍光剤を使用し、近赤外蛍光ウィンドウの発光スペクトル(650から950 nm)は、信号対雑音比を大幅に向上させることができます。近赤外蛍光ウィンドウはヘモグロビン及び水による信号の比較的低い吸収ならびに低バックグラウンド自己蛍光によって特徴付けられます。 9これは、小動物の組織で最大2センチ侵入深さを可能にします。 OI-プローブが直接(蛍光標識抗体による)目標に対処することができるか、(プロテアーゼにより)標的組織中で活性化することができます。活性化OIプローブを伴う別のドメインへの分子内励起エネルギーを伝達消光部分、に蛍光共鳴エネルギー移動(FRET)にそれらの不活性化形態の光学的にサイレントです。染料は(例えばプロテアーゼによって)切断された場合にエネルギーはもはや分子内に移し、蛍光シグナルがOIによって検出することができるではありません。これは、高specificitとOIプローブの設計を可能に明確な生物学的プロセスと優れた信号対雑音比が得られます。
以下のプロトコルは、動物の調製、in vivoでの MMP-2、-3、-9および-13活性および炎症の2つの実験モデル(RA、CHR)を画像化するための活性化可能OIプローブを用いたOI測定を詳細に説明する。
OIは、前臨床研究インビボ分子イメージングにおける非侵襲性のために非常に有用な迅速かつ安価なツールです。 OIの特定の強さは、炎症応答のような非常に動的なプロセスを監視する能力です。また、OIは、1つの数日から数週間の範囲の、長期間にわたって病気の経過を追跡することを可能にします。
それは非常に時間とコスト効率的であるようにOIは、…
The authors have nothing to disclose.
私たちは、優れた技術サポートのためにダニエル・ブカラ、ナタリー・アルトメイヤーとFundaケイに感謝します。私たちは、原稿を編集するためのジョナサン・コットン、グレッグ・ボーデンとポールSoubiranに感謝します。この作品は、CRC 156(プロジェクトC3)を通じてヴェルナーシーメンス財団とエバーハード・カールズ大学テュービンゲン(「」Promotionskolleg「」)の医学部でとDFGによってサポートされていました。
Cornergel | Gerhard Mann GmbH | 1224635 | ophthalmic ointment |
Forene | Abbott GmbH | 4831850 | isoflurane |
U40 insulin syringe | Becton Dickinson and Company | 324876 | |
Heparin | Sintetica | 6093089 | |
High-Med-PE 0.28×0.61mm | Reichelt Chemietechnik GmbH+Co | 28460 | polyethylene tubing, inner diameter 0.28 mm, outer diameter 0.61 mm |
BD Regular Bevel Needles, 30 G | Becton Dickinson & Co. Ltd. | 305106 | 30 G injection cannula |
RTA-0011 isoflurane vaporizer | Vetland Medical Sales and Services LLC | – | |
Artagain drawing paper | Strathmore Artist Paper | 446-8 | coal black |
IVIS Spectrum | Perkin Elmer | 124262 | Optical imaging system |
BD Regular Bevel Needles, 25 G | Becton Dickinson and Company | 305122 | |
2-Chloro-1,3,5-trinitrobenzene | Sigma Aldrich GmbH | 7987456F | TNCB |
MMPSense 680 | Perkin Elmer | NEV10126 | fluorescent imaging dye |
Oditest | Koreplin GmbH | C1X018 | mechanical measurment |
Miglyol 812 | SASOL | – | Oil |
BALB/C, C57BL/6 | Charles River Laboratories | – | Mice used for experiements |
PBS | Sigma Aldrich GmbH | For dilution of the RA serum | |
Pipette (100µl) | Eppendorf | Used for TNCB application | |
shaver | Wahl | 9962 | Animal hair trimmer |
Living Image | Perkin Elmer | Imaging software to measure OI |