Small laboratory fish have become popular models for bone research on the mechanisms underlying human bone disorders and for the screening of bone-modulating drugs. In this report, we describe a protocol to assess the effect of alendronate on bone cells in medaka larvae with osteoporotic lesions.
Bone-forming osteoblasts interact with bone-resorbing osteoclasts to coordinate the turnover of bone matrix and to control skeletal homeostasis. Medaka and zebrafish larvae are widely used to analyze the behavior of bone cells during bone formation, degeneration, and repair. Their optical clarity allows the visualization of fluorescently labeled bone cells and fluorescent dyes bound to the mineralized skeletal matrix. Our lab has generated transgenic medaka fish that express the osteoclast-inducing factor Receptor Activator of Nuclear-factor κB Ligand (RANKL) under the control of a heat shock-inducible promoter. Ectopic expression of RANKL results in the excess formation of activated osteoclasts, which can be visualized in reporter lines with nlGFP expression under the control of the cathepsin K (ctsk) promoter. RANKL induction and ectopic osteoclast formation leads to severe osteoporosis-like phenotypes. Compound transgenic medaka lines that express ctsk:nlGFP in osteoclasts, as well as mCherry under the control of the osterix (osx) promoter in premature osteoblasts, can be used to study the interaction of both cell types. This facilitates the in vivo observation of cellular behavior under conditions of bone degeneration and repair. Here, we describe the use of this system to test a drug commonly used in human osteoporosis therapy and describe a protocol for live imaging. The medaka model complements studies in cell culture and mice, and offers a novel system for the in vivo analysis of drug action in the skeletal system.
The vertebrate skeleton provides structural support and protection for organs, allows mobility, and serves as a source of calcium. Throughout life, the extracellular bone matrix is continuously turned over to maintain bone stability and rigidity. This process requires the tightly coordinated activity and interplay of bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts are derived from multipotent mesenchymal progenitors and produce collagen to form the osteoid, the proteinaceous part of the bone matrix10. Osteoblasts interact with osteoclasts to achieve a balanced activity of both cell types, which is required to control bone homeostasis7. Because of these intricate regulatory interactions, responses to drug treatment and bone homeostasis cannot be fully examined using in vitro studies. Hence, there is a strong demand for animal models. Compared to the cell culture settings, in vivo models can provide valuable insight into the multicellular networks within the bone environment.
Numerous mouse models exist for a variety of human bone disorders including osteoporosis16. However, the size and accessibility of mouse embryos represent significant limitations for live imaging of skeletal processes. Small teleost fish, on the other hand, serve as an attractive alternative for in vivo imaging. Zebrafish (Danio rerio) and medaka (Oryzias latipes) have become popular animal models for skeletal research over the last two decades17, 19, 22, 24. Bone in teleost fish and in mammals is very similar, both on a structural and on a physiological level, and many of the key regulatory genes and signaling pathways are conserved3. As in mammals, teleost fish carefully regulate the activity of osteoblasts and osteoclasts to balance bone formation and resorption26. Most importantly, the optical clarity of fish larvae allows the use of fluorescent reporters to label bone cells and the calcified skeletal matrix8, 9, 12, 21, 23, which facilitates the observation of cellular processes in the living animal. In addition, a series of genetic tools has been generated to facilitate biomedically relevant research in fish. For medaka in particular, methods for targeted gene mutation by CrispR/Cas92, cell-lineage tracing6, and site-specific transgenesis14 have been recently established and are now widely in use15.
Small teleost larvae have been successfully used for chemical screens, which led to the discovery of several pharmacologically relevant drugs1, 18.
Fish larvae are tolerant to low concentrations of DMSO and are able to absorb compounds from their aquatic environment, either through the skin or through the gastrointestinal tract1, 5. Our lab previously reported transgenic medaka lines that express fluorescent reporters in bone cells under the control of various osteoblast- and osteoclast-specific promoters. These include premature osteoblasts (collagen 10a1, col10a1; osterix, osx)20, 21, mature osteoblasts (osteocalcin, osc)27, and osteoclasts (cathepsin K, ctsk)24. We also generated a transgenic line that expresses the osteoclast-inducing factor Receptor Activator of Nuclear-factor κB Ligand (RANKL) under the control of a heat shock-inducible promoter24.
Induction of RANKL in this system results in the ectopic formation of active osteoclasts. This leads to increased bone resorption and a severe osteoporosis-like phenotype, with drastically reduced mineralization in the vertebral bodies. We recently showed that osteoclast activity in this model can be blocked by the bisphosphonates etidronate and alendronate, two drugs commonly used in human osteoporosis therapy, thus validating medaka as a suitable model system for osteoporosis27.
Due to their large brood size, rapid development, and small size of embryos, transgenic medaka larvae are uniquely suited for the large-scale screening of osteoporosis drugs and for the in vivo analysis of bone cell behavior. Studies in medaka thus can efficiently complement experiments in cell cultures and in mice that are aimed at discovering new therapeutic targets and novel therapies for human bone disorders.
In the present study, we describe a protocol to treat medaka bone-reporter larvae with the common osteoporosis drug, alendronate. We also describe in detail how treated larvae are mounted and prepared for the live imaging of bone matrix and bone cells. These protocols can be easily adapted to other small chemical compounds that either work as bone anabolic or antiresorptive drugs.
All experiments were performed in accordance with approved Institutional Animal Care and Use Committee (IACUC) protocols of the National University of Singapore (R14-293).
1. Fish Husbandry and the Collection of Embryos
2. Transgenic Embryo Screening
Figure 1: WT and Transgenic Medaka Embryos at 7 D Postfertilization (DPF). A. WT embryos observed with brightfield illumination. B. Transgenic embryos showing osx:mCherry expression around the cleithrum (arrow) and parasphenoid (arrowhead). C. Transgenic embryos showing ctsk:nlGFP expression in the head (arrow) and tail (arrowhead). Scale bars: 500 µm. Please click here to view a larger version of this figure.
3. Bisphosphonate Treatment of Medaka Larvae
4. Live Staining of Mineralized-bone Matrix
5. Live Fluorescence Imaging
6. Live Confocal Imaging
Abundant egg numbers, as well as the small size of the larvae, make medaka an excellent model for drug screening. A single six-well plate was used to culture up to 36 larvae, which was sufficient to provide statistically significant data. Another big advantage of using fish for skeletal analysis is the possibility of doing live imaging. The transparency of fish larvae allows the use of fluorescent proteins to label bone cells, as well as the use of dyes that bind to bone matrix in order to visualize mineralization. Fish larvae are easy to handle, and sample preparation for imaging is simple (Figure 2).
A RANKL:HSE:CFP/ctsk:nlGFP double-transgenic line was used to visualize the ectopic formation of RANKL-induced osteoclasts. Additionally, osx:mCherry/ RANKL:HSE:CFP/ctsk:nlGFP triple-transgenic larvae were used for the simultaneous detection of premature osteoblasts and differentiated osteoclasts (Figure 3). Overview images were taken with a stereomicroscope (Figure 3A – C and F – H), while confocal microscopy was used to visualize processes at the cellular level (Figure 3D, E, I, J arrowheads). ALC-stained bone matrix along the neural arches (na) and centra (c) (Figure 3D) was used as a reference to determine the position of fluorescently labeled bone cells (Figure 3D and I).
An advantage of simultaneously visualizing osteoclasts and osteoblasts in the same intact larvae is that the antiresorptive vs. bone-anabolic activities of a tested compound can be distinguished. For this, the distribution of osteoclasts and osteoblasts is determined along pre-existing and newly formed mineralized bone matrix. Successive staining of bone matrix with ALC (red) (Figure 4A, B) followed by calcein (green) (Figure 4C, D) reveals de novo mineralized bone matrix (green) (Figure 4E, F arrowheads). This assay allows for the quantification of the rate of bone formation. Increased de novo rates after drug treatment indicate a bone-anabolic effect of the tested compound. In contrast, persistence of pre-existing bone matrix points to an antiresorptive activity of the drug27. Both ALC and calcein labels in the larvae are stable for at least two weeks, allowing a continuous observation of new bone formation in medaka larvae in vivo.
Figure 2: Schematic Diagram of Drug Treatment, Live ALC Staining, and Mounting for Confocal Live Imaging. A. A six-well plate is used for drug treatment to ensure sufficient space for the larvae. The mineralized-bone matrix is stained by incubating medaka larvae in 0.1% ALC for 1.5 – 2 h in the dark. Stained larvae are rinsed several times with fish medium. 0.01% Tricaine is used to anesthetize larvae. B. After the transfer of anesthetized larvae to lukewarm and liquid 1.5% low-melting agarose, their position is adjusted with a plastic microloader. The larvae are then mounted according to the region of interest (e.g., the vertebrate column is best imaged in the lateral view). After the agarose has solidified, the mounted sample is ready for confocal imaging. Please click here to view a larger version of this figure.
Figure 3: ctsk:nlGFP and osx:mCherry Expression in Transgenic Medaka Larvae at 10 DPF, without and after Heat Shock-induced RANKL Expression. A-C. Control larvae without RANKL induction. ALC-stained skeletal matrix (A); note the unspecific auto-fluorescence signal in the dorsally located row of pigment cells. ctsk:nlGFP expression in the head and tail (B) and the distribution of osx:mCherry-positive premature osteoblasts in the cranium, vertebral columns, and caudal fin (C). D. Confocal stack of the area boxed in A and B showing the absence of ectopic osteoclasts around the neural arches (na) and centra (c) at this developmental stage. E. Confocal stack of the area boxed in C showing osx:mCherry-expressing premature osteoblasts along the neural arches and at the edges of the centra. Osteoclasts are absent from the trunk without RANKL induction. F-J. Larvae after RANKL induction by heat shock at 9 DPF. F. ALC-stained skeletal matrix. G. ctsk:nlGFP-expressing osteoclasts forming in the vertebral column. Insets in G show individual images taken at higher magnification that are stitched together to result in the compound image in G. H. The distribution of osx:mCherry-expressing cells is not altered 1 d after RANKL induction. I. Confocal stack of the area boxed in F and G showing RANKL-induced osteoclasts forming around the neural arches, as well as the centra (arrowheads). J. Confocal stack of the area boxed in H showing ctsk:nlGFP-expressing osteoclasts next to osx:mCherry-labeled premature osteoblasts along the neural arches and the centra. Scale bars in A, B, C, F, G, and H: 100 µm. Scale bars in D, E, I, and J: 50 µm. Please click here to view a larger version of this figure.
Figure 4: Analysis of De Novo Mineralization of Bone Matrix by the Successive Staining of Larvae with ALC and Calcein at 12 and 15 DPF, Respectively. A,B. ALC-stained skeletal matrix at 12 DPF. C,D. Calcein-stained skeletal matrix at 15 DPF in the same larvae. E,F. Merged image showing the newly mineralized bone matrix at the tips of the neural arches (green, arrows). B, D, and F. Confocal stack of the area boxed in A, C, and E, respectively. Scale bars in A, C, and E: 100 µm. Scale bars in B, D, and F: 50 µm. Please click here to view a larger version of this figure.
Figure 5: Representative Images Showing an Unsuccessful and a Successful Mounting for Confocal Imaging. A-C. Unsuccessful mounting in low-melting agarose results in part of the sample (left) lying outside of the focal plane. D-F. Successful mounting showing all regions of interest in the same focal plane. Scale bars: 50 µm. Please click here to view a larger version of this figure.
Figure 6: Alendronate Treatment Prevents Bone Resorption. ALC-stained skeletal matrix and ctsk:nlGFP-expressing osteoclasts in transgenic medaka larvae without RANKL induction (A-C), with heat shock-induced RANKL expression (D-F), and with the addition of alendronate on the same day as RANKL induction (G-I). C, F, and I. Confocal stacks of the areas boxed in A and B, D and E, G and H, respectively. C. ALC-stained intact vertebral columns without RANKL induction. F. RANKL-induced, ctsk-expressing osteoclasts form around the neural arches and the centra, resulting in the complete resorption of the mineralized matrix of the neural arches (arrows) and in defects to the centra (arrowheads). G. The addition of alendronate has no effect on the formation of ctsk:nlGFP-expressing osteoclasts, but it blocks bone resorption and leaves the neural arches and the centra intact. Scale bars in A, B, D, E, G, and H: 100 µm. Scale bars in C, F, and I: 50 µm. Please click here to view a larger version of this figure.
Critical Steps within the Protocol
It is essential that the conditions for heat shock treatment are consistent and stable when comparing different samples. Stable temperature conditions guarantee similar levels of RANKL induction in the transgenic larvae and, consequently, comparable osteoclast formation, which can be confirmed by screening for ctsk:nlGFP expression. Ultimately, this leads to a similar degree of induced ectopic bone resorption and osteoporosis-like lesions, as validated by ALC staining. Such an experimental design then allows for the determination and comparison of the effects of various anti-resorptive drugs or the same drug applied at different concentrations.
Modifications and Troubleshooting
Fish larvae are very fragile and must be carefully handled during the mounting process for imaging. For optimal live confocal imaging, larvae are carefully positioned with a plastic microloader, rather than forceps, to avoid injuries (Figure 2B). The yolk extension is less sensitive to touch stimuli and can be used to orientate the larvae with a microloader, thereby avoiding larval movement during mounting. The region of interest should be mounted flat to ensure that the sample can be focused in one focal plane during imaging (Figure 5). Bone cell behavior is very dynamic and requires high temporal and spatial resolution during live imaging. Optimally, time-lapse imaging by confocal analysis is desired to follow osteoblast-osteoclast interactions over the course of several hours in the living larvae. However, this demands special conditions to keep the larvae alive and in a fixed position. For prolonged anesthesia, a solution of 0.001% Tricaine in fish medium is added to cover the solidified agarose during imaging. This prevents the agarose from drying out and prevents sudden twitching of the larvae during imaging over several hours.
Limitations of the Technique
Osteoporosis is a disease that mostly affects elderly humans. Therefore, an ideal in vivo model for osteoporosis drug screening should involve adult fish. So far, however, the technique of live imaging described in this report is limited to the embryonic and larval stages. Currently available confocal imaging does not allow live imaging of genetically labeled bone cells in adult fish due to limitations in penetration depth. The recent development of Light Sheet Fluorescence Microscopy (LSFM), which allows imaging deep into living tissue, together with the availability of less pigmented "see-through" medaka strains, makes it conceivable that this limitation will soon be overcome, and live imaging of bone cells in adult medaka fish after drug screening will be possible.
Significance of the Technique with Respect to Existing/Alternative Methods
A unique combination of live imaging and advanced genetic tools has made small teleost fish popular for biomedical research — bone research in particular — and as in vivo models for drug screening. With the possibility to analyze cell-cell interactions within an intact organism, transgenic medaka lines are uniquely suited for the live imaging of dynamic cellular processes during bone modeling and remodeling. Because they share many gene-regulatory networks for controlling bone homeostasis with mammals, in vivo studies in medaka can complement and even exceed in vitro studies using mammalian osteoblast and osteoclast cell-culture assays.
Future Applications or Directions after Mastering This Technique
Other than testing single compounds in a transgenic background, as described in this protocol, fish also offer simple approaches to examine combinations of various drugs for possible synergy or interference of compounds. Furthermore, the use of a combination of different reporter lines, for example, in the context of a particular mutant background, provides ample opportunities to study the behavior of bone cells during different stages of bone degeneration and repair, or in the presence of a bone-modulating drug. With its unique features that complement mouse assays, the medaka osteoporosis model provides an excellent in vivo approach to test and quantify the anabolic and antiresorptive effects of novel bone-modulating compounds.
The authors have nothing to disclose.
This project was funded by grants from the Singapore Ministry of Education (MOE, grant number 2013-T2-2-126) and the National Institute of Health, USA (NIH, grant number 1R21AT008452-01A1). T.Y. received a graduate scholarship from the NUS Department of Biological Sciences. We thank the confocal unit of the NUS Centre for Bioimaging Sciences (CBIS) for their constant support.
Alendronate | Sigma | A4978 | |
alizarin-3-methyliminodiacetic acid, Alizarin Complexone | Sigma | A3882 | |
Calcein | Sigma | C0875 | |
ethyl 3-aminobenzoate methanesulfonate (Tricaine) | Sigma | A5040 | |
ImageJ (1.4.3.67) | National Institute of Health (NIH) | https://imagej.nih.gov/ij/ | |
LSM 510 Meta confocal | Zeiss | ||
LSM Image Browser (4.2.0.121) | Zeiss | http://www.zeiss.com/microscopy/en_de/downloads/lsm-5-series.html | |
Micro-loader | Eppendorf | 5242956003 | Eppendorf ep T.I.P.S 20 μl |
NIS-Elements BR 3.0 software | Nikon | ||
Photoshop CS6 (13.0.0.0) | Adobe | ||
SMZ1000 stereomicroscope | Nikon |