We describe here a method to identify multiple phosphorylations of an intrinsically disordered protein by Nuclear Magnetic Resonance Spectroscopy (NMR), using Tau protein as a case study. Recombinant Tau is isotopically enriched and modified in vitro by a kinase prior to data acquisition and analysis.
Aggregates of the neuronal Tau protein are found inside neurons of Alzheimer’s disease patients. Development of the disease is accompanied by increased, abnormal phosphorylation of Tau. In the course of the molecular investigation of Tau functions and dysfunctions in the disease, nuclear magnetic resonance (NMR) spectroscopy is used to identify the multiple phosphorylations of Tau. We present here detailed protocols of recombinant production of Tau in bacteria, with isotopic enrichment for NMR studies. Purification steps that take advantage of Tau’s heat stability and high isoelectric point are described. The protocol for in vitro phosphorylation of Tau by recombinant activated ERK2 allows for generating multiple phosphorylations. The protein sample is ready for data acquisition at the issue of these steps. The parameter setup to start recording on the spectrometer is considered next. Finally, the strategy to identify phosphorylation sites of modified Tau, based on NMR data, is explained. The benefit of this methodology compared to other techniques used to identify phosphorylation sites, such as immuno-detection or mass spectrometry (MS), is discussed.
Eine der wichtigsten Herausforderungen der Gesundheitsversorgung im 21. Jahrhundert sind neurodegenerative Erkrankungen wie Alzheimer – Krankheit (AD). Tau ist ein Mikrotubuli-assoziiertes Protein, das Mikrotubuli (MT) Bildung stimuliert. Tau gleichmäßig in mehreren neurodegenerativen Erkrankungen beteiligt sind, sogenannte Tauopathien, von denen die bekannteste AD ist. In dieser Erkrankungen, Tau Selbst Aggregate in gepaarte helikale Filamente (PHFs) und fand bei vielen Reste durch posttranslationale Modifikationen (PTMs) wie Phosphorylierung 1 modifiziert ist. Die Phosphorylierung des Tau-Proteins ist in beiden Regulation seiner physiologischen Funktion von MT Stabilisierung und pathologische Verlust der Funktion impliziert, dass AD-Neuronen charakterisiert.
Weiterhin Tau – Protein, wenn in PHFs in erkrankten Neuronen integriert wird ausnahmslos 2 hyperphosphoryliert. Im Gegensatz zu normalen Tau, die 2-3 Phosphatgruppen enthält, enthält die hyperphosphorylated Tau in PHFs 5 bis 9 phosphate Gruppen 3. Hyperphosphorylierung von Tau entspricht sowohl zu einer Erhöhung der Stöchiometrie an einigen Standorten und zur Phosphorylierung von zusätzlichen Stellen, die pathologische Websites der Phosphorylierung genannt werden. Allerdings Überlappung besteht zwischen AD und normalen erwachsenen Muster der Phosphorylierung trotz quantitative Unterschiede in der Ebene 4. Wie spezifische Phosphorylierungsereignisse Einflussfunktion und Dysfunktion von Tau bleibt weitgehend unbekannt. Wir zielen darauf ab Tau Regulierung durch PTM auf molekularer Ebene zu entschlüsseln.
Um das Verständnis der molekularen Aspekte der Tau zu vertiefen, müssen wir technische Herausforderungen zu bewältigen. Erstens ist Tau ein intrinsisch ungeordneten Protein (IDP), wenn in der Lösung isoliert. Solche Proteine fehlen wohldefinierte dreidimensionale Struktur unter physiologischen Bedingungen und insbesondere biophysikalischen Methoden benötigen, um ihre Funktion (en) und strukturellen Eigenschaften zu studieren. Tau ist ein Paradigma für die wachsende Klasse von IDPs, fand oft im Zusammenhang mitKrankheiten wie neurodegenerative Erkrankungen, die Erhöhung somit das Interesse der molekularen Parameter zugrunde liegenden ihre Funktionen zu verstehen. Zweitens Charakterisierung von Tau-Phosphorylierung ist ein analytisches Herausforderung mit 80 potentiellen Phosphorylierungsstellen entlang der Sequenz des längsten 441 Aminosäure-Tau-Isoform. Eine Anzahl von Antikörpern wurden gegen phosphorylierte Epitope von Tau entwickelt und werden für den Nachweis von pathologischen Tau in Neuronen oder Hirngewebe verwendet. Phosphorylierungsereignisse stattfinden kann auf mindestens 20 Seiten gezielt durch Prolin-gerichtete Kinasen, die meisten von ihnen in der Nähe in der Prolin-reiche Region. Die qualitative (welche Seiten?) Und quantitative (welche Stöchiometrie?) Charakterisierung ist schwierig , auch durch die jüngsten MS – Techniken 5.
NMR-Spektroskopie kann verwendet werden, ungeordnete Proteine zu untersuchen, sind hochdynamische Systeme von Ensembles von Konformeren gebildet. Hochauflösende NMR-Spektroskopie war Anwened sowohl Struktur als auch Funktion des Tau-Proteins zu untersuchen. Darüber hinaus führte die Komplexität der Tau – Phosphorylierung des Profils auf die Entwicklung von molekularen Werkzeugen und neue Analyseverfahren unter Verwendung von NMR zur Identifizierung von Phosphorylierungsstellen 6 – 8. NMR als analytisches Verfahren ermöglicht die Identifizierung von Tau Phosphorylierungsstellen in einer globalen Weise Visualisierung aller Single-Site-Modifikationen in einem einzigen Experiment, und Quantifizierung des Ausmaßes der Phosphat-Inkorporation. Dieser Punkt ist wichtig, da, obwohl die Phosphorylierung Studien über Tau in der Literatur gibt es zuhauf, die meisten von ihnen wurden mit Antikörpern durchgeführt wurde, ein hohes Maß an Unsicherheit über die gesamte Profil der Phosphorylierung verlassen und damit die tatsächlichen Auswirkungen der einzelnen Phosphorylierungsereignisse. Rekombinante Kinasen einschließlich PKA, Glykogen-Synthase-Kinase-3β (GSK3 & bgr;), Cyclin-abhängige Kinase 2 / Cyclin A (CDK2 / CycA), Cyclin-abhängige Kinase 5 (CDK5) / p25 Aktivator Protein, extrazelluläre-signal-regulated kinase 2 (ERK2) und Mikrotubuli-Affinität regulierenden Kinase (MARK), die in Richtung Tau-Phosphorylierung Aktivität zeigen, können in aktiver Form hergestellt werden. Darüber hinaus Tau-Mutanten, die zur Erzeugung von spezifischen Tau-Protein-Isoformen mit gut charakterisierten Phosphorylierungsmuster ermöglichen, werden verwendet, um die Phosphorylierung Code von Tau zu entziffern. NMR – Spektroskopie wird dann Proben zu charakterisieren enzymatisch modifizierten Tau verwendet , 6 bis 8. Obwohl in vitro Phosphorylierung von Tau schwieriger als Pseudo-Phosphorylierung wie durch Mutation von ausgewählten Ser / Thr in Glutaminsäure (Glu) Resten ist, hat dieser Ansatz seine Vorzüge. Tatsächlich sind weder die strukturellen Auswirkungen noch Wechselwirkungsparameter der Phosphorylierung kann immer durch Glutaminsäure nachgeahmt werden. Ein Beispiel ist das wiederum Motiv um Phosphoserin 202 (pSer202) beobachtet / Phosphothreonin 205 (pThr205), die mit Glu Mutationen 9 nicht wiedergegeben wird.
<p class = "jove_content"> Hier wird die Herstellung von isotopenmarkierten Tau für NMR-Untersuchungen wird zuerst beschrieben. Tau-Protein durch ERK2 phosphoryliert wird auf zahlreichen Standorten als pathologisch Websites der Phosphorylierung beschrieben modifiziert und stellt somit ein interessantes Modell von hyperphosphorylated Tau. Ein detailliertes Protokoll von Tau in vitro – Phosphorylierung durch rekombinante ERK2 – Kinase vorgestellt. 12 – ERK2 durch Phosphorylierung von MAP-Kinase-Weg / ERK – Kinase (MEK) 10 aktiviert. Zusätzlich zur Herstellung von modifizierten, isotopenmarkierte Tau-Protein, die Strategie zur Identifizierung des PTMs verwendet NMR beschrieben.Wir haben NMR-Spektroskopie verwendet enzymatisch modifizierten Tau-Proben zu charakterisieren. Die rekombinante Expression und Reinigung der menschlichen Volllängen-Tau-Protein hier beschrieben sind, können in ähnlicher Weise zu erzeugen mutanten Tau oder Tau-Domänen verwendet werden. Isoto- Protein wird für die NMR-Spektroskopie benötigt, rekombinante Expression erforderlich macht. Identifizierung von Phosphorylierungsstellen erfordert Resonanzzuordnung und 15 N, 13 C doppelt markierte Prot…
The authors have nothing to disclose.
The NMR facilities were funded by the Région Nord, CNRS, Pasteur Institute of Lille, European Community (FEDER), French Research Ministry and the University of Sciences and Technologies of Lille. We acknowledge support from the TGE RMN THC (FR-3050, France), FRABio (FR 3688, France) and Lille NMR and RPE Health and Biology core facility. Our research is supported by grants from the LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to Alzheimer’s disease), EU ITN TASPPI and ANR BinAlz.
pET15B recombinant T7 expression plasmid | Novagen | 69257 | Keep at -20°C |
BL21(DE3) transformation competent E.coli bacteria | New England Biolabs | C2527I | Keep at -80°C |
Autoclaved LB Broth, Lennox | DIFCO | 240210 | Bacterial Growth Medium |
MEM vitamin complements 100X | Sigma | 58970C | Bacterial Growth Medium Supplement |
15N, 13C-ISOGRO complete medium powder | Sigma | 608297 | Bacterial Growth Medium Supplement |
15NH4Cl | Sigma | 299251 | Isotope |
13C6-Glucose | Sigma | 389374 | Isotope |
Protease inhibitor tablets | Roche | 5056489001 | Keep at 4°C |
1 tablet in 1ml is 40X solution that can be kept at -20°C | |||
DNaseI | EUROMEDEX | 1307 | Keep at -20°C |
Homogenizer (EmulsiFlex-C3) | AVESTIN | Lysis is realized at 4°C | |
Pierce™ Unstained Protein MW Marker | Pierce | 266109 | |
Active human MEK1 kinase, GST Tagged | Sigma | M8822 | Keep at -80°C |
AKTÄ Pure chromatography system | GE Healthcare | FPLC | |
HiTrap SP Sepharose FF (5 mL column) | GE Healthcare | 17-5156-01 | Cation exchange chromatography columns |
HiPrep 26/10 Desalting | GE Healthcare | 17-5087-01 | Protein Desalting column |
PD MidiTrap G-25 | GE Healthcare | 28-9180-08 | Protein Desalting column |
Tris D11, 97% D | Cortecnet | CD4035P5 | Deuterated NMR buffer |
5 mm Symmetrical Microtube SHIGEMI D2O ( set of 5 inner & outerpipe) | Euriso-top | BMS-005B | NMR Shigemi Tubes |
eVol kit-electronic syringe starter kit | Cortecnet | 2910000 | Pipetting |
Bruker 900MHz AvanceIII with a triple resonance cryogenic probehead | Bruker | NMR spectrometer for data acquisition | |
Bruker 600MHz DMX600 with a triple resonance cryogenic probehead | Bruker | NMR spectrometer for data acquisition | |
TopSpin 3.1 | Bruker | Acquisition and Processing software for NMR experiments | |
Sparky 3.114 | UCSF (T. D. Goddard and D. G. Kneller) | NMR data Analysis software |