We describe a method for generating localization and affinity purification (LAP)-tagged inducible stable cell lines for investigating protein function, spatiotemporal subcellular localization and protein-protein interaction networks.
Multi-protein complexes, rather than single proteins acting in isolation, often govern molecular pathways regulating cellular homeostasis. Based on this principle, the purification of critical proteins required for the functioning of these pathways along with their native interacting partners has not only allowed the mapping of the protein constituents of these pathways, but has also provided a deeper understanding of how these proteins coordinate to regulate these pathways. Within this context, understanding a protein’s spatiotemporal localization and its protein-protein interaction network can aid in defining its role within a pathway, as well as how its misregulation may lead to disease pathogenesis. To address this need, several approaches for protein purification such as tandem affinity purification (TAP) and localization and affinity purification (LAP) have been designed and used successfully. Nevertheless, in order to apply these approaches to pathway-scale proteomic analyses, these strategies must be supplemented with modern technological developments in cloning and mammalian stable cell line generation. Here, we describe a method for generating LAP-tagged human inducible stable cell lines for investigating protein subcellular localization and protein-protein interaction networks. This approach has been successfully applied to the dissection of multiple cellular pathways including cell division and is compatible with high-throughput proteomic analyses.
To investigate the cellular function of an uncharacterized protein it is important to determine its in vivo spatiotemporal subcellular localization and its interacting protein partners. Traditionally, single and tandem epitope tags fused to the N or C-terminus of a protein of interest have been used to facilitate protein localization and protein interaction studies. For example, the tandem affinity purification (TAP) technology has enabled the isolation of native protein complexes, even those that are in low abundance, in both yeast and mammalian cell lines1,2. The localization and affinity purification (LAP) technology, is a more recent development that modifies the TAP procedure to include a localization component through the introduction of the green fluorescent protein (GFP) as one of the epitope tags3. This approach has given researchers a deeper understanding of a protein’s subcellular localization in living cells while also retaining the ability to perform TAP complex purifications to map protein-protein interaction networks.
However, there are many issues associated with the use of TAP/LAP technologies that has hampered their widespread use in mammalian cells. For example, the length of time that is necessary to generate a stable cell line expressing a TAP/LAP tagged protein of interest; which typically relies on cloning the gene of interest into a viral vector and selecting single cell stable integrants with the desired expression level. Additionally, many cellular pathways are sensitive to constitutive protein overexpression (even at low levels) and can arrest cells or trigger cell death over time making the generation of a TAP/LAP stable cell line impossible. These and other constraints have impeded LAP/TAP methodologies from becoming high-throughput systems for protein localization and protein complex elucidation. Therefore, there has been considerable interest in the development of an inducible high-throughput LAP-tagging system for mammalian cells that takes advantage of current innovations in cloning and cell line technologies.
Here we present a protocol for generating stable cell lines with Doxycycline/Tetracycline (Dox/Tet) inducible LAP-tagged proteins of interest that applies advances in both cloning and mammalian cell line technologies. This approach streamlines the acquisition of data with regards to LAP-tagged protein subcellular localization, protein complex purification and identification of interacting proteins4. Although affinity proteomics utilizes a wide range of techniques for protein complex elucidation5, our approach is beneficial for expediting the identification of these complexes and their native interaction networks and is amenable to high-throughput protein tagging that is necessary to investigate complex biological pathways that contain a multitude of protein constituents. Key to this approach are advancements in cloning strategies that enable high fidelity and expedited cloning of target genes into an array of vectors for gene expression in vitro, in various organisms like bacteria and baculovirus, and in mammalian cells6,7. Additionally, the ORFeome collaboration has cloned thousands of sequence validated open reading frames in vectors that incorporate these advances in cloning, which are available to the scientific community8-11. In our system, the pGLAP1 LAP-tagging vector enables the simultaneous cloning of a large number of clones, which facilitates high-throughput LAP-tagging. This expedited cloning procedure is coupled to a streamlined approach for generating cell lines with LAP-tagged genes of interest inserted at a single pre-determined genomic locus. This makes use of cell lines that contain a single flippase recognition target (FRT) site within their genome, which is the site of integration for LAP-tagged genes. These cell lines also express the tetracycline repressor (TetR) that binds to Tet operators (TetO2) upstream of the LAP-tagged genes and silences their expression in the absence of Dox/Tet. This allows for Dox/Tet inducible expression of the LAP-tagged protein at any given time. Having the capability of inducible LAP-tagged protein expression is critical, since many cellular pathways are sensitive to the levels of critical proteins governing the pathway and can arrest cell growth or trigger cell death when these proteins are constitutively overexpressed, even at low levels, making the generation of non-inducible LAP-tagged stable cell lines impossible12.
概説プロトコルは、LAP-タギングベクターに目的の遺伝子のクローニングを記載し、誘導性LAP-タグ付けされた安定な細胞株の生成、およびプロテオーム解析のためのLAP-タグ付けされたタンパク質複合体の精製。他のLAP / TAP-タギングアプローチに関して、このプロトコルは、任意の細胞経路内のタンパク質の局在化およびタンパク質 – タンパク質相互作用をマッピングするための高スループットアプローチに適合するように合理化されています。このアプローチは、広くいくつか例を挙げると、細胞周期進行、有糸分裂紡錘体アセンブリ、紡錘体極の恒常性、およびciliogenesisための重要なタンパク質の機能的特徴に適用されており、これらのタンパク質の誤調節は、ヒトの疾患15に導くことができる方法の理解を助けています16,19,20。たとえば、私たちのグループは最近定義するには、スピンドル・アセンブリ15,21にSTARD9の有糸分裂キネシン(候補癌ターゲット)の機能と規制を定義するには、このシステムを利用しますTctex1d2ダイニン軽鎖間の新たな分子リンク そして、ショートリブ多指症症候群(SRPS)19、およびMID2ユビキチンリガーゼの突然変異は、X連鎖知的障害者16につながることができますどのように理解するための新たな分子リンクを定義します。他の研究室では、正常なTctn1、マウスヘッジホッグシグナリングのレギュレータは、組織に依存した方法22,23で規制繊毛膜組成とciliogenesisこと繊毛病関連タンパク質複合体の一部であると判断したものを含め、この方法を適用しています。したがって、このプロトコルは、広く任意の細胞経路の切開に適用することができます。
このプロトコルにおける重要なステップは、ハイグロマイシン耐性であるLAPタグ安定な細胞株の選択です。特別なケアは、コントロールプレート内のすべてのセルが増幅するための実験プレートに焦点を選択する前に死んでいることを確実にするために注意すべきです。ハイグロマイシンもADDEすることができますLAP-タグ付けされた安定な細胞株のルーチン細胞培養中のdはさらに、すべての細胞がFRT部位での関心のLAP-タグ付けされた遺伝子を維持することを確実にします。我々は、すべてLAPタグタンパク質は機能的で、タンパク質の機能をテストするために使用することができる場所でアッセイを有することが重要であるということだろうと警告します。タンパク質の機能をテストするために使用されるアッセイの例は、siRNA誘導性の表現型のインビトロ活性アッセイで救助を含みます。大LAP-タグを付加した任意の潜在的な問題に対処するために、我々は以前に、目的のタンパク質の機能および局在化を阻害する可能性が低いFLAGのような小さいタグを含むこのシステムと互換性TAP-タグベクトルを生成しています4。また、LAP-タギングベクターは、C末端LAPタグタンパク質またはLAP / TAPタグがNで許容されていない場合に使用することができ、このシステムと互換性のあるC末端TAPタグ化タンパク質を生成するために存在しますタンパク質の末端。また、第精製バッファー(LAPX N)の電子塩と洗剤濃度が増加またはnoneまたはあまりにも多くの相互作用が認められた場合に精製ジェンシーが低下するように改変することができます。同様に、タンデムアフィニティー精製法は、単一の精製手順と弱い相互作用が少ない又は全く相互作用が同定されている場合、単一の精製スキームを使用することができ、したがって、失われる可能性がより厳しいです。
タンパク質の局在化および精製研究24,25のためのタグ付け、大規模なGFPタンパク質を可能にする他のGFPのエピトープ標識のアプローチが存在することに留意することが重要です。これらはすべて、調節要素、模倣内因性遺伝子発現24が含まれ、それらの天然の環境から関心のGFPタグ遺伝子を発現する細菌人工染色体を利用BAC TransgenOmicsアプローチが含まれます。さらに最近では、CAS9 /シングルガイド付きRNA(sgRNA)リボ核タンパク質複合体(RNPを)が終了するために使用されてきましたogenouslyそれらの内因性のゲノム遺伝子座25からGFPタグ遺伝子の発現を可能にするスプリットGFPシステムと目的の遺伝子にタグを付けます。これらのアプローチの両方は、LAP-タギングプロトコルと比較して、内因性の条件の下でタグ付けされたタンパク質の発現を可能にするが、彼らは関心のタグ付けされた遺伝子の誘導および調節可能な発現を可能にしない、ここで説明します。さらに、それらは、TAPのためのタンデムエピトープタグに適用されるには至っていません。他のタグ付けシステムはまた、誘導性エピトープタグ安定な細胞株を生成するために、ここで説明したシステムと互換になるように修正することができることに留意することも重要です。例えば、近接依存ビオチン識別(BioID)が原因で相互作用するタンパク質26の間の空間的および時間的関係を定義する能力にかなりの注目を集めています。この技術は、大腸菌ビオチンリガーゼBirAをの無差別歪み、ビオチン化タンパク質融合を利用します酵素の〜10nmの半径内の任意のタンパク質は、S。ビオチン化タンパク質は、次いで、親和性は、ビオチンアフィニティー捕捉を用いて精製し、質量分析により組成を分析します。 BirAを、複雑な27の中に弱い相互作用パートナーを検出するために特に適していますこれは、あっても一時的に、近接して任意のタンパク質をビオチン化されます。さらに、精製スキームは、内因性のタンパク質 – タンパク質相互作用が無傷のままであり、従って、偽陽性の割合を減少させる、変性条件下で行うことができることを必要としません。私たちの現在のプロトコルの中で、あるBirA-タギングベクターによるpGLAP1ベクトルの置換は、近接性に基づいてそれらを検出するとの親和性に基づいてタンパク質 – タンパク質相互作用を同定するから、このシステムを変換することができます。多くの酵素 – 基質相互作用の間及び時空間のタンパク質 – タンパク質INTEをマッピングする場合のように、このようなシステムは、一過性タンパク質相互作用を検出するために非常に有利であろう中心体と繊毛26,28のために行われているように定義される構造内ractions。
The authors have nothing to disclose.
This work was supported by a National Science Foundation Grant NSF-MCB1243645 (JZT), any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Flp-In T-REx Core Kit | Invitrogen | K6500-01 | Kit for generating cell lines that contain an FRT site and TrtR expression |
PETG, 5X | Nunc, Inc. | 73520-734 | Roller bottle for growing cells |
PETG, 2.5X | Nunc, Inc. | 73520-420 | Roller bottle for growing cells |
Cell stackers | Corning CellSTACK | 3271 | Cell stacker for growing cells |
500 mL conical centrifuge tubes | Corning | 431123 | Tubes for harvesting cells |
Anti-GFP antibody | Invitrogen | A11122 | Rabbit anti GFP antibody |
Affiprep Protein A beads | Biorad | 156-0006 | Used as a matrix for conjugating anti-GFP antibodies |
Dimethylpimelimidate (DMP) | ThermoFisher Scientific | 21667 | Used for conjugating anti-GFP antibodies to Protein A beads |
TLA100.3 tubes | Beckman | 349622 | Tubes for centrifuging protein lysates during the clearing step |
TEV protease | Invitrogen | 12575-015 | Used for cleaving the GFP tag off of N-terminal LAP-tagged proteins |
Precession Protease | GE Healthcare | 27-0843-01 | Used for cleaving the GFP tag off of C-terminal LAP-tagged proteins |
S-protein agarose | Novagen | 69704 | Used as a second affinity matrix during the purification of LAP-tagged protein complexes |
QIAquick DNA gel extraction kit | Qiagen | 28704/28706 | For use in purifying PCR products from an agarose gel |
BP clonase II | Invitrogen | 11789020 | Used for cloning ORF PCR products into the pDONR221 shuttle vector |
LR clonase II | Invitrogen | 11791020 | Used for cloning the ORF of the gene of interest into the pGLAP1 LAP-tagging vector |
ccdB Survival 2 T1R E. coli | Invitrogen | A10460 | Used for propgating shuttle vectors and pGLAP empty vectors |
Fugene 6 | Promega | E2691 | Transfection reagent for transfecting vectors into human cells |
Tetracycline | Invitrogen | Q100-19 | Drug for inducing Dox/Tet inducible protein expression |
Doxycycline | Clontech | 631311 | Drug for inducing Dox/Tet inducible protein expression |
Hygromycin B | Invitrogen | 10687010 | Drug for selecting stable LAP-tagged integrants |
Kanamycin | Corning | 61-176-RG | Drug for selecting Kanamycin resistant bacterial colonies |
Ampicillin | Fisher | BP1760-5 | Drug for selecting Ampicillin resistant bacterial colonies |
4-20% Tris Glycine SDS-PAGE gels | Biorad | 4561094 | Used for separating protein samples and final LAP-tag purification eluates |
Silver Stain Plus Kit | Biorad | 1610449 | Used for silver staining the eluates of LAP-tagged pufications and samples collected throughout the purification process |
Coomassie Blue stain | Invitrogen | LC6060 | Used for staining SDS-PAGE gels to visulize LAP-tagged purifications and cutting out protein bands, mass spectrometry compatible |
Shuttle vector pDONR221 | Invitrogen | 12536017 | Shuttle vector for cloning the ORFs of genes of interest |
Flippase expressing vector pOG44 | Invitrogen | V600520 | Vector that expresses the Flippase recombinase for integrating LAP-tagged genes into the genome of FRT site containing cell lines |
Platinum Taq DNA Polymerase | ThermoFisher Scientific | 10966018 | Used for PCR amplification of the ORFs of genes of interest |
4X Laemmli sample buffer | Biorad | 1610747 | Sample buffer for eluting purified LAP-tagged protein complexes from the bead matrix |
Luria broth (LB) media | Fisher | BP9723-2 | Used for growing DH5α bacteria |
DNA miniprep kit | Promega | A1222 | Used for making DNA plasmid minipreps |
DMEM/F12 media | Hyclone | SH30023.01 | For growing Hek293 human cells |
FBS lacking Tet | Altanta Biologicals | S10350 | Used for making -Tet DMEM/F12 media for generating and growing inducible LAP-tagged stable cell lines |
Trypsin | Hyclone | SH30042.01 | For lifting Hek293 cell foci from plates |
Protease inhibitor tablets | Roche | 11836170001 | Used for making protocol buffers, EDTA-free |
10% nonyl phenoxypolyethoxylethanol | Roche | 11332473001 | Used for making protocol buffers |
PBS | Corning | 21-040-CM | Used for making protocol buffers |
Tween-20 | Fisher | BP337-500 | Used for making protocol buffers |
Sodium Borate | Fisher | S249-500 | Used for making protocol buffers |
Boric Acid | Fisher | A78-500 | Used for making protocol buffers |
Ethanolamine | Calbiochem | 34115 | Used for making protocol buffers |
NaCl | Fisher | P217-3 | Used for making protocol buffers |
KCl | Fisher | BP358-10 | Used for making protocol buffers |
Dithiothreitol (DTT) | Fisher | BP172-25 | Used for making protocol buffers |
MgCl2 | Fisher | M33-500 | Used for making protocol buffers |
Tris base | Fisher | BP152-5 | Used for making protocol buffers |