Summary

流式细胞仪为基础的检测方法的NK细胞功能的监控

Published: October 30, 2016
doi:

Summary

一种简单和可靠的方法是此处描述的分析的一组NK细胞的功能,如不同的NK细胞亚群内脱粒,细胞因子和趋化因子生产。

Abstract

Natural killer (NK) cells are an important part of the human tumor immune surveillance system. NK cells are able to distinguish between healthy and virus-infected or malignantly transformed cells due to a set of germline encoded inhibitory and activating receptors. Upon virus or tumor cell recognition a variety of different NK cell functions are initiated including cytotoxicity against the target cell as well as cytokine and chemokine production leading to the activation of other immune cells. It has been demonstrated that accurate NK cell functions are crucial for the treatment outcome of different virus infections and malignant diseases. Here a simple and reliable method is described to analyze different NK cell functions using a flow cytometry-based assay. NK cell functions can be evaluated not only for the whole NK cell population, but also for different NK cell subsets. This technique enables scientists to easily study NK cell functions in healthy donors or patients in order to reveal their impact on different malignancies and to further discover new therapeutic strategies.

Introduction

作为先天性免疫系统天然杀伤的一部分(NK)细胞有助于针对病毒感染或恶性转化的细胞防御的第一道防线。抑制和激活受体的一种系统使他们没有相反的T细胞之前,抗原引发健康和转化的细胞之间进行区分。当靶细胞相遇NK细胞释放它们的细胞毒性颗粒( 穿孔素,颗粒酶)的含量为免疫突触杀死他们的目标。此外,NK细胞产生和分泌不同种类的细胞因子( 例如,干扰素γ:干扰素γ;肿瘤坏死因子α:TNF-α)和趋化因子( 例如,巨噬细胞炎性蛋白1β:MIP-1β)在靶细胞相互作用或细胞因子刺激1。

足够的NK细胞功能,如细胞毒性,趋化因子和细胞因子的产生有不同的存款保险计划的命运产生重要影响简化。白血病患者显示增加的复发率,如果他们在诊断显示出有缺陷的NK细胞轮廓由减少的IFN-γ生产和活化NK细胞受体2的表达减少。 NK细胞数量和功能,包括细胞因子的产生对靶细胞相互作用的早期恢复与接收异基因造血干细胞移植3例患者减少复发和改善存活率有关。此外,当在C型肝炎病毒感染的病人的干扰素治疗开始外周血NK细胞的脱粒能力是在早期应答比在非应答者4更强。 NK细胞数(> 80 /微升)在第15天在从淋巴瘤或多发性骨髓瘤的患者的自体干细胞移植(autoSCT)之后是预测性的改进的无进展生存率和总生存率5。在黑素瘤患者的T细胞中的表达immunoglobulin-和粘蛋白结构域containin克分子-3(TIM-3),NK细胞上的免疫调节蛋白,与疾病分期和预后6相关。

科学家们在整个过去几十年监测NK细胞的功能。抗肿瘤细胞NK细胞细胞毒性的不预先起动最初的分析是使用51 Cr-释放测定法7解决。最近,科学家开发了一种非放射性方法来评估膨胀NK细胞8的细胞毒性。细胞因子和趋化因子生产已使用酶联免疫吸附测定(ELISA)技术9,10-频繁评估。在过去几十年来,这些方法已通过流式细胞术基于测定补充。与常规的表面染色方案结合使用蛋白转运抑制剂( 如,布雷菲德菌素A和莫能菌素)和细胞透方法已使科学家研究在不同的特定淋巴趋化因子和细胞因子产生ocyte子集( 例如 ,T,B或NK细胞)11。此外,不同的流量基于流式细胞术的测定法已被开发并监控T和NK细胞的细胞毒性。在2004年阿尔特等人在目标小区遭遇所述NK细胞的溶酶体相关蛋白CD107a(灯1)的表面上表达作为细胞毒性颗粒12的脱粒标记。自宽范围的不同的荧光染料和多通道的流式细胞仪的是在我们的日子可用,它已成为可能同时监测在不同NK细胞亚群多样NK细胞功能(细胞毒性,细胞因子和趋化因子生产)。这成为在的情况下的样本大小是有限的, 例如 ,特别重要的是,在活检或从白细胞减少患者的血液样本。

为了测试全局NK细胞的功能,不同的流基于流式细胞仪的测定法可以有效地结合起来。 Theorell 从HEA刺激NK细胞lthy捐助者与肿瘤细胞株K562和分析通过流式细胞仪13 NK细胞脱颗粒,由内向外信号和趋化因子的生产。最近NK细胞亚群,表型和肿瘤患者的功能autoSCT期间使用流式细胞仪为基础的试验进行了分析。据表明,NK细胞能够脱粒和autoSCT 11后在非常早的时间点产生在肿瘤细胞识别细胞因子/趋化因子。

这里一个协议描述用一个流式细胞术为基础的测定法,使得它能够同时监视在不同子集的NK细胞功能的肿瘤细胞,包括脱粒能力,趋化因子和细胞因子的产生来评估相互作用后NK细胞的功能。

Protocol

这项研究是根据法兰克福大学的当地伦理委员会的建议进行的。 1,K562细胞的培养培养的K562细胞在R10培养基(RPMI1640谷氨酰胺培养基,1%青霉素/链霉素,10%胎牛血清)中以每毫升0.5-1×10 6细胞在细胞培养瓶中的密度,在37℃和5%的CO 2。 嘉实K562细胞24小时的新实验开始前。 删除含有从孵化器中的K562细胞的细胞培养瓶。通过上下轻轻吹打起来,再暂停培…

Representative Results

用于分析脱粒,细胞因子和趋化因子生产整个NK细胞种群和三种不同的NK细胞亚群的门控策略在图1中示出。 一种健康的供体的代表性结果显示于图2所示的NK细胞无任何刺激产生既不IFN-γ也不MIP-1β和不表达CD107a在其表面上( 图2A)。相反,用肿瘤细胞和细胞因子刺激的NK细胞产生显著量…

Discussion

所描述的方法是一种简单,快速和可靠的方法来研究健康人或病人全血标本NK细胞功能。这种方法提供了很大的优势,以直接净化从全血NK细胞,避免了费时密度梯度离心,这是强制性的许多其他纯化方法15。此外,它需要比较“经典的”NK细胞分离/富集方法较小的样本大小,这使得它对于儿科和/或免疫缺陷患者的样品的合适的替代。该协议可以被用来获得NK细胞功能的离体的基础?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Authors were supported by the German Cancer Aid (Max Eder Nachwuchsgruppe, Deutsche Krebshilfe; EU), the LOEWE Center for Cell and Gene Therapy Frankfurt (EU, ST) funded by the Hessian Ministry of Higher Education, Research and the Arts, Germany (III L 4- 518/17.004) and by the “Alfred- und Angelika Gutermuth-Stiftung”, Frankfurt, Germany (EU). BJ was funded by a Mildred Scheel postdoctoral scholarship from the Dr. Mildred Scheel Foundation for Cancer Research. ST was founded by a GO-IN postdoctoral fellowship (PCOFUND-GA-2011-291776). The authors thank Becton Dickinson (BD) for providing the FACSCanto II and Canto10c Flow Cytometry Analyzers used in this study.

Materials

RPMI 1640 + glutamine Invitrogen 6187-044
penicilin/streptomycin Invitrogen 15140-122
BD Falcon Round Bottom Tube BD 352008
fetal calf serum Invitrogen 10270-106 heat inactivated before use
T-flask Greiner Bio-One 690195
K562 tumor cell line DSMZ GmbH ACC 10
ammonium-chloride-potassium (ACK) lysis buffer made in house / components are listed in the text
Distilled water: Ampuwa Spüllösung 1000ml Plastipur Fresenius Kabi 1088813
Megafuge 40R Centrifuge Heraeus /
EDTA blood collector tubes Sarstedt 386453 S-Monovette 7,5 ml, K3 EDTA
UltraPure 0.5M EDTA, pH 8.0 Life Technologies 15575-020
Hematopoietic media (XVIVO) Lonza Group Ltd BE04-743Q
human serum DRK Blutspendedienst, Frankfurt/M  / healthy donors with blood type AB; heat inactivated before use
Neubauer-improved counting chamber, bright line Marienfeld superior/ LO-Laboroptik Ltd. 0640030/ 1110000
trypan blue solution (0,4%) Invitrogen 15250-061
3% acetic acid with methylene blue Stemcell Technologies  07060
Corning 96 Well Clear V-Bottom TC-treated Microplates Corning  3894
Falcon 96 Well Round Bottom Not Treated Microplates Corning  351177
DPBS (Ca2+– and Mg2+-free) Gibco Invitrogen 14190-169
BSA Sigma Aldrich A2153-100G
NaN3 Sigma Aldrich 08591-1ML-F
phorbol 12-myristate 13-acetate (PMA)  Merck 524400-1MG
ionomycin  PromoKine PK-CA577-1566-5
interleukin 15 (IL-15) PeproTech 200-15
Proleukin S (IL-2)  Novartis Pharma 730523
Golgi Stop, Protein Transport Inhibitor (containing Monensin) BD Biosciences 554724 This product can be used in combination or instead of Golgi Plug. The best combination for the wished experimental setting has to be tested.
Golgi Plug, Protein Transport Inhibitor (containing Brefeldin A) BD Biosciences 555029
paraformaldehyde AppliChem UN2209
saponin Sigma Aldrich 47036
flow cytometer: Canto10C BD Biosciences /
FlowJo TreeStar Inc. /
Graph Pad Graph Pad Inc. /
MACSxpress Separator Miltenyi Biotec  130-098-308
MACSxpress NK isolation kit Miltenyi Biotec  130-098-185
MACSxpress Erythrocyte Depletion Kit, human Miltenyi Biotec  130-098-196
MACSmix Tube Rotator  Miltenyi Biotec  130-090-753
anti-human CD3 APC Biolegend 300412
anti-human CD3 V450 BD Biosciences 560366
anti-human CD14 PerCP Miltenyi Biotec  130-094-969
anti-human CD14 V450 BD Biosciences 560349
anti-human CD16 PE Biolegend 302008
anti-human CD16 PerCP Biolegend 302029
anti-human CD19 PE-Cy7 Biolegend 302216
anti-human CD19 V450 BD Biosciences 560353
anti-human CD45 BV510 BD Biosciences 563204
anti-human CD56 FITC Biolegend 345811
anti-human CD107a PE Biolegend 328608
anti-human IFN-γ AF-647 BD Biosciences 557729
anti-human MIP-1β APC-H7 BD Biosciences 561280
DAPI Biolegend 422801
Zombie Violet Fixable Viability Kit Biolegend 423113 fixable dead cell marker

Referenzen

  1. Watzl, C. How to trigger a killer: modulation of natural killer cell reactivity on many levels. Adv Immunol. 124, 137-170 (2014).
  2. Khaznadar, Z., et al. Defective NK Cells in Acute Myeloid Leukemia Patients at Diagnosis Are Associated with Blast Transcriptional Signatures of Immune Evasion. J Immunol. 195 (6), 2580-2590 (2015).
  3. Pical-Izard, C., et al. Reconstitution of natural killer cells in HLA-matched HSCT after reduced-intensity conditioning: impact on clinical outcome. Biol Blood Marrow Transplant. 21 (3), 429-439 (2015).
  4. Ahlenstiel, G., et al. Early changes in natural killer cell function indicate virologic response to interferon therapy for hepatitis C. Gastroenterology. 141 (4), 1231-1239 (2011).
  5. Porrata, L. F., et al. Early lymphocyte recovery predicts superior survival after autologous stem cell transplantation in non-Hodgkin lymphoma: a prospective study. Biol Blood Marrow Transplant. 14 (7), 807-816 (2008).
  6. Silva, I. P., et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res. 2 (5), 410-422 (2014).
  7. Kiessling, R., Klein, E., Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 5 (2), 112-117 (1975).
  8. Somanchi, S. S., Senyukov, V. V., Denman, C. J., Lee, D. A. Expansion, purification, and functional assessment of human peripheral blood NK cells. J Vis Exp. (48), (2011).
  9. Mariani, E., et al. Chemokine production by natural killer cells from nonagenarians. Eur J Immunol. 32 (6), 1524-1529 (2002).
  10. Reefman, E., et al. Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol. 184 (9), 4852-4862 (2010).
  11. Jacobs, B., et al. NK Cell Subgroups, Phenotype, and Functions After Autologous Stem Cell Transplantation. Front. Immunol. 6, 583 (2015).
  12. Alter, G., Malenfant, J. M., Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 294 (1-2), 15-22 (2004).
  13. Theorell, J., et al. Sensitive and viable quantification of inside-out signals for LFA-1 activation in human cytotoxic lymphocytes by flow cytometry. J Immunol Methods. 366 (1-2), 106-118 (2011).
  14. Brander, C., et al. Inhibition of human NK cell-mediated cytotoxicity by exposure to ammonium chloride. J Immunol Methods. 252 (1-2), 1-14 (2001).
  15. Beeton, C., Chandy, K. G. Enrichment of NK cells from human blood with the RosetteSep kit from StemCell technologies. J Vis Exp. (8), e326 (2007).
  16. Lamoreaux, L., Roederer, M., Koup, R. Intracellular cytokine optimization and standard operating procedure. Nat. Protoc. 1 (3), 1507-1516 (2006).
  17. Baginska, J., et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci U S A. 110 (43), 17450-17455 (2013).
  18. He, L., et al. A sensitive flow cytometry-based cytotoxic T-lymphocyte assay through detection of cleaved caspase 3 in target cells. J Immunol Methods. 304 (1-2), 43-59 (2005).
  19. Sutton, V. R., et al. Serglycin determines secretory granule repertoire and regulates NK cell and CTL cytotoxicity. FEBS J. 283 (5), 947-961 (2016).
  20. Schönberg, K., Hejazi, M., Uhrberg, M. Protocol for the clonal analysis of NK cell effector functions by multi-parameter flow cytometry. Methods Mol Biol. 903, 381-392 (2012).
  21. Björkström, N. K., et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. 116 (19), 3853-3864 (2010).
  22. Bryceson, Y. T., Ljunggren, H. G., Long, E. O. Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood. 114 (13), 2657-2666 (2009).
  23. Cooper, M. A., et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood. 97 (10), 3146-3151 (2001).
  24. Fauriat, C., Long, E. O., Ljunggren, H. G., Bryceson, Y. T. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 115 (11), 2167-2176 (2010).
  25. Postow, M. A., Callahan, M. K., Wolchok, J. D. Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol. 33 (17), 1974-1982 (2015).
  26. Glienke, W., et al. Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol. 6, 21 (2015).
  27. Curran, K. J., Brentjens, R. J. Chimeric antigen receptor T cells for cancer immunotherapy. J Clin Oncol. 33 (15), 1703-1706 (2015).
  28. Zappasodi, R., de Braud, F., Di Nicola, M. Lymphoma Immunotherapy: Current Status. Front. Immunol. 6, 448 (2015).
  29. Laprevotte, E., et al. Endogenous IL-8 acts as a CD16 co-activator for natural killer-mediated anti-CD20 B cell depletion in chronic lymphocytic leukemia. Leuk Res. 37 (4), 440-446 (2013).
  30. Maloney, D. G., et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 90 (6), 2188-2195 (1997).
  31. Salles, G., et al. Phase 1 study results of the type II glycoengineered humanized anti-CD20 monoclonal antibody obinutuzumab (GA101) in B-cell lymphoma patients. Blood. 119 (22), 5126-5132 (2012).
  32. Terszowski, G., Klein, C., Stern, M. KIR/HLA interactions negatively affect rituximab- but not GA101 (obinutuzumab)-induced antibody-dependent cellular cytotoxicity. J Immunol. 192 (12), 5618-5624 (2014).
  33. Hsu, A. K., et al. The immunostimulatory effect of lenalidomide on NK-cell function is profoundly inhibited by concurrent dexamethasone therapy. Blood. 117 (5), 1605-1613 (2011).
  34. Salih, J., et al. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer. 127 (9), 2119-2128 (2010).
  35. Benson, D. M., et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood. 120 (22), 4324-4333 (2012).
  36. Vey, N., et al. A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood. 120 (22), 4317-4323 (2012).
  37. Terme, M., Ullrich, E., Delahaye, N. F., Chaput, N., Zitvogel, L. Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol. 9 (5), 486-494 (2008).

Play Video

Diesen Artikel zitieren
Tognarelli, S., Jacobs, B., Staiger, N., Ullrich, E. Flow Cytometry-based Assay for the Monitoring of NK Cell Functions. J. Vis. Exp. (116), e54615, doi:10.3791/54615 (2016).

View Video