A high-throughput microarray method for the identification of polymers which reduce bacterial surface binding on medical devices is described.
Medical devices are often associated with hospital-acquired infections, which place enormous strain on patients and the healthcare system as well as contributing to antimicrobial resistance. One possible avenue for the reduction of device-associated infections is the identification of bacteria-repellent polymer coatings for these devices, which would prevent bacterial binding at the initial attachment step. A method for the identification of such repellent polymers, based on the parallel screening of hundreds of polymers using a microarray, is described here. This high-throughput method resulted in the identification of a range of promising polymers that resisted binding of various clinically relevant bacterial species individually and also as multi-species communities. One polymer, PA13 (poly(methylmethacrylate-co-dimethylacrylamide)), demonstrated significant reduction in attachment of a number of hospital isolates when coated onto two commercially available central venous catheters. The method described could be applied to identify polymers for a wide range of applications in which modification of bacterial attachment is important.
Microarrays de polímero são miniaturizados plataformas de alto rendimento em que até 7.000 polímeros 1 são impressos em lâminas de vidro para análise paralela com células procarióticas ou eucarióticas 2. O método aqui apresentado baseia-se no que foi descrito pela primeira vez em 2010 3. Este sistema de rastreio tenha sido aplicada a numerosos tipos de células incluindo hepatócitos humanos 4, as células-tronco 5, células epiteliais tubulares renais 2, bactérias e patogénicos protozoários 3,6 7. Em cada caso, os polímeros que promovem ou resistir ligação das células em estudo foram identificados 8. Os complexos de ADN com polímeros policatiónicos sintéticos também têm sido utilizados no formato de microarray para o rastreio de alto rendimento de transfecção de genes candidatos 9. Bem como a triagem para as interacções célula-substrato, microarrays de polímero também têm sido usados para avaliar as propriedades do material 10.
"> A capacidade dos polímeros sintéticos para modular a ligação de bactérias a uma superfície está bem estabelecida 3,6,11. Numerosos factores, incluindo a carga, a hidrofobicidade e a rugosidade da superfície da superfície do polímero são conhecidos por afectarem. As abordagens convencionais de ligação bacterianas de biomateriais descobrindo que resistem a ligação de bactérias através sequencialmente ou empiricamente projetar e testar um único material de cada vez são, caro e processos demorados de trabalho intensivo. microarrays Polymer oferecer uma alternativa atraente para contornar essas limitações.bactérias associadas à superfície crescem como uma população complexa denominada um biofilme – tais biopelículas são altamente resistentes a muitos stresses ambientais e antibióticos. Isto é em parte devido à sua matriz extracelular densa (composto por proteínas, polissacáridos e ácidos nucleicos) 12 e em parte devido ao aumento da presença de "células" persistor robustos em biofilmes 13. althourg os mecanismos precisos da associação de superfície e a subsequente formação do biofilme são difíceis de caracterizar, geralmente acredita-se que existem três estágios diferentes de crescimento de superfície 14 – 16. Inicial anexo, reversível é seguido por mais forte adesão de células, o estabelecimento de um biofilme pela produção de uma proteína extracelular e matriz de polissacárido e proliferação celular. Finalmente, os lançamentos biofilme maduro células planctônicas, que podem iniciar novas infecções em outros lugares de vida livre. polímeros que impedem a fixação inicial de bactérias e, portanto, impedem estágios iniciais de formação de biofilmes de bactérias repelente, potencialmente representam uma excelente solução para minimizar infecções. Dado o aumento da resistência aos antibióticos (e também a intrinsecamente maior resistência de bactérias associadas a superfície 12), meios livre de antibióticos de reduzir infecções são de particular interesse. Num ambiente hospitalar, bactérias polímero que repelerevestimentos podem ter uma aplicação médica direta na redução de infecções nosocomiais, que geralmente formam dispositivos torno implantados 17.
Aqui, um método de alto rendimento para o rastreio de 381 de polímeros para a actividade repelente contra uma gama de bactérias patogénicas associadas com as infecções nosocomiais, seguido de validação batida e revestimento subsequente e ensaio de materiais de cateteres venosos centrais, é descrito (Figura 1). Resumidamente, os polímeros foram depositados em lâminas de vidro revestidas com agarose por impressão por contacto e, após a secagem e esterilização, as matrizes miniaturizados foram incubadas com culturas bacterianas clinicamente importantes. Após a incubação, as micromatrizes foram suavemente lavadas e as células bacterianas aderentes foram coradas e visualizados por fluorescência. Subsequentemente, os polímeros que inibiram a ligação bacteriana foram investigadas em maior escala por revestimento sobre lamelas de vidro e visualizadas por microscopia de electrões. repelem selecionadaspolímeros emprestados foram então revestidas sobre cateteres comerciais e mostrado para reduzir a ligação de bactérias por quase 100 vezes.
Anexo de bactérias a uma superfície é um processo complexo determinado por uma vasta gama de factores dependentes das espécies de bactérias, as propriedades da superfície, o meio envolvente e para o ambiente físico. Embora certos grupos químicos são conhecidos para afectar a ligação de bactérias (poliglicóis, por exemplo, normalmente resistir a ligação 11), correlacionando o impacto biológica de polímeros com as suas estruturas químicas é difícil, tornando o desenho racional de polímeros para funções específicas desafiantes. Na ausência de mecanismos de fixação detalhados, outros estudos têm tentado imitar superfícies repelentes de ocorrência natural, com longa e otimização extensa processa 21. O método de alto rendimento miniaturizado aqui apresentado supera estes desafios, facilitando o rastreio paralelo de centenas de polímeros para identificar leads para um estudo mais aprofundado.
Os resultados do método de microarray servir principalmente para identify candidatos prováveis de chumbo. A Figura 2 ilustra com 22 candidatos baixo de ligação de pelo menos uma espécie, enquanto a Figura 3 demonstra a redução clara da capacidade de ligação. Todos os 22 polímeros de ligação baixos apresentados na na Figura 2 foram levados para a frente em experimentos em escala-up, durante o qual o melhor (em termos de repelência e revestimento propriedades) foram determinados como PU83, PA13 e PA515 (Figuras 4 e 5). Poliacrilatos oferecer uma maior flexibilidade em termos de métodos de polimerização e de modo que o poliacrilato de ligação menor, PA13, foi escolhido para os estudos de revestimento do cateter (figuras 6 e 7). A continuação dos trabalhos mais pormenorizadas sobre outros candidatos foi realizado e foi reportado em outros lugares 6.
Através de uma série de iterações experimentais encontramos uma série de passos menores foram chave para o sucesso e reprodutibilidade. Para além de facilitar a aderência dopolímeros para as lâminas de vidro, utilizando uma agarose de sub-revestimento proporciona um fundo limpo, como agarose é altamente resistente à colonização bacteriana. Da mesma forma consistência no polímero acaba-se, tanto no interior da mesma matriz e entre matrizes, é vital e, portanto, a impressão das matrizes deve ser cuidadosamente controlada. são necessários ajuste cuidadoso dos pinos na cabeça de impressão e preenchimento também uniforme da placa de 384 poços para garantir a mancha uniforme. Como alguns dos polímeros que usamos exibiu um grau de autofluorescência, tendo os dados de fundo de fluorescência para cada slide antes da incubação com bactérias era vital. Para considerar as variações e obter repetições de microarrays de dados robustos são aconselhados.
A mancha empregue aqui (DAPI) não tem selectividade para as espécies bacterianas, de ligação não específica de ADN. Portanto, uma boa técnica asséptica é essencial, uma vez culturas de bactérias são introduzidas como contaminantes podem passar despercebidas, confundindo o interpreção dos resultados. O mesmo é verdade para experiências posteriores por meio de microscopia eletrônica de varredura, onde só é possível distinguir as hastes e cocos mas não géneros ou espécies.
Depois de rastreio de microarray, polímeros promissores deve ser escolhido para posterior validação. No exemplo aqui apresentado, sete polímeros de interesse foram identificados pela sua clara redução na fluorescência sobre o micro-arranjo e a sua inibição da ligação foi confirmada por revestimento sobre as superfícies maiores. As Figuras 4 e 5 mostram a redução na ligação conseguida em lamelas de vidro, uma meios práticos para testar o comportamento dos polímeros como revestimentos a granel, em vez de como manchas de microarray. Subsequentemente, estes polímeros foram usados para revestir os dispositivos médicos para quantificar completamente redução em anexo bacteriana. É importante que o solvente escolhido (ver secção protocolo 8) para estes estudos de revestimento é benigna para o substrato desejado (neste caso, o cateter), conservandoing capacidade de dissolver o polímero de interesse, de modo a permitir o revestimento. Aqui, utilizou-se a acetona, que, assim como as propriedades mencionadas, tem um baixo ponto de ebulição e evapora-se rapidamente para deixar um revestimento uniforme.
Os meios de validação escolhido dependerá da aplicação específica a ser estudada. Como observação de células por microscopia electrónica e fluorescência permite a quantificação direta de ligação de células individuais, escolhemos estas técnicas como um complemento para o ensaio de coloração microarray granel. Os resultados são mostrados nas Figuras 6 e 7, que demonstram a importância dos métodos de validação de cortesia. As imagens confocais na Figura 6 fornecem imagens muito nítidas de células individuais, enquanto o SEM tem a vantagem adicional de permitir uma avaliação da superfície do polímero, a qual é aqui lisa e uniforme. Estes métodos são limitados pelo campo de visão dos microscópios usados, e, portanto, é important a tomar uma série de instantâneos que ter confiança nos resultados. O método acima descrito não pode quantificar a aderência bacteriana ao longo de toda a superfície, apenas a cobertura inferir a partir de uma série de pequenas regiões. Acreditamos que esta é suficiente para a aplicação descrita. Redução na ligação bacteriana pode ser avaliado através da enumeração de bactérias aderidas de superfície em peças inteiras os cateteres revestidos e não revestidos, utilizando métodos como descrito noutro local 22. No entanto, tais métodos exigem as superfícies de biomateriais rastreados para ter uma área de superfície uniforme, o que é difícil de manter quando os ensaios são realizados com dispositivos médicos, que são muitas vezes de geometria complexa.
Claramente, qualquer dispositivo destinado para uso clínico deve passar por mais testes substancial para garantir a segurança e eficácia em humanos. O método aqui apresentado representa o início deste processo e mais trabalho deve incluir a confirmação da actividade in vivo. Neste caso, o estudo c venosaatheters, o trabalho inicial poderia investigar a ligação de componentes do sangue e células inteiras para o polímero. O efeito dos componentes do sangue, na ligação de bactérias, também deve ser considerado, possivelmente através da repetição dos ensaios de ligação na presença de soro inactivado ou sangue de-fibrinated 23. O teste definitivo da tecnologia será feita de um modelo in vivo, tais como um modelo de infecção implante subcutâneo 24.
Nós demonstrar o potencial do método de microarray de polímero para a seleção de polímeros de superfície de alteração. Tais polímeros (tanto resistindo e promovendo bacteriana de ligação) tem um grande número de aplicações na medicina, indústria de alimentos e biotecnologia, o que significa que este método pode ser útil em muitas áreas de pesquisa. Embora o trabalho aqui usa bactérias, o método poderia ser adaptado a outros tipos de células e da mesma forma outros químicos microarrays.
The authors have nothing to disclose.
The authors thank EASTBIO (the East of Scotland BioScience Doctoral Training Partnership funded by the BBSRC) (S. V.) and the Medical Research Council (P.J.G) for funding.
Agarose | Sigma | 05066 | |
Silane-prep slides | Sigma | S4651 | |
Polymers | Synthesised in-house | Not applicable | |
NMP | Sigma | 494496 | |
LB Broth | Oxoid | CM1018 | |
DAPI | Thermo Fisher | D1306 | |
Tetrahydrofuran | Sigma | 401757 | |
(3-aminopropyl) triethoxysilane coated glass slides | Sigma | Silane-prep | |
Cacodylate buffer | Sigma | 97068 | |
Catheter 1 | Arrow International | CS12123E | |
Catheter 2 | Baxter Healthcare | ECS1320 | |
Osmium tetroxide | Sigma | 201030 | |
Equipment | |||
Contact printer | Genetix | Qarraymini | |
Microarray microscope | IMSTAR | Pathfinder | |
Spin Coater | Speedline Technologies | 6708D | |
Confocal microscope | Leica | SP5 | |
Image analysis software | Media Cybernetics | Image-Pro Plus | |
Scanning electron microscope | Philips | XL30CP | |
Sputter coater | Bal-Tec | SCD050 |