Summary

肾脏免疫细胞的可靠和高效率的提取

Published: August 19, 2016
doi:

Summary

Techniques that are reliable and efficient for the isolation of kidney immune cells are needed for downstream applications. This requires surface antibody labeling of a small number of kidney immune cells. Herein, we describe a concise method for isolation of kidney immune cells that seemingly achieves this goal.

Abstract

Immune system activation occurs in multiple kidney diseases and pathophysiological processes. The immune system consists of both adaptive and innate components and multiple cell types. Sometimes, the cell type of interest is present in very low numbers among the large numbers of total cells isolated from the kidney. Hence, reliable and efficient isolation of kidney mononuclear cell populations is important in order to study the immunological problems associated with kidney diseases. Traditionally, tissue isolation of kidney mononuclear cells have been performed via enzymatic digestions using different varieties and strengths of collagenases/DNAses yielding varying numbers of viable immune cells. Recently, with the development of the mechanical tissue disruptors for single cell isolation, the collagenase digestion step is avoided and replaced by a simple mechanical disruption of the kidneys after extraction from the mouse. Herein, we demonstrate a simple yet efficient method for the isolation of kidney mononuclear cells for every day immune cell extractions. We further demonstrate an example of subset analysis of immune cells in the kidney. Importantly, this technique can be adapted to other soft and non-fibrous tissues such as the liver and brain.

Introduction

免疫系统激活发生在多个肾脏疾病和病理生理过程6,10,11,13。活跃​​的研究的潜在领域包括对免疫系统的激活的各种触发器,各种细胞类型涉及,在一个特定的疾病设置的细胞因子/趋化因子的模式,由特定的药物等。所有前述过程的调制为了举例说明,在缺血 – 再灌注损伤(急性肾损伤的模型),有增加的免疫细胞或骨髓衍生的造血细胞或CD45 +细胞在几个小时内,这是通过维修或纤维化的期间持续(6周后)5, 12。这些免疫细胞分泌促炎性和抗炎性细胞因子和趋化因子既来编排修复5,12的过程。目前,同时使用多个荧光团来标记细胞群体中的单个细胞悬浮液的能力已经与广告增加发泄现代流式细胞仪机与四到五激光器。这大大增加的能力来区分基于其功能状态3,7的细胞群。例如,为了精确地标记巨噬细胞为 ,将在相同的样品体积是需要的栅极F4 / 80 的CD11b Ly6b CD206至少3个荧光团为活细胞,CD45 +(白细胞)和Ly6G-(中性粒细胞)和这是与新的流式细胞仪3很可能的。然而,对于细胞因子的分泌,细胞增殖,细胞毒性,巨噬细胞活化和淋巴细胞和单核细胞的各种子集的数目的量化的下游分析不仅需要有良好的质量(活细胞,单峰),但细胞的足够数量。

在肾脏的免疫系统由两个适应性和先天组件和多种细胞类型1,7,13的。例如,在小鼠中两个小子分离(1.4×10 6个细胞)和它们的约5-15%(1,400-4,200)的总肾免疫细胞neys一起被报道含有2-17%(28,000-266,000) CD45 +细胞是CD4 +细胞1 ,5,12。这些CD4 +细胞的一小部分(5-15%,70-630)是FOXP3 +细胞( 1)1。由于在细胞中的百分比这些步骤明智的减少,有时感兴趣的细胞群(在这种情况下,CD45 + CD4 +的FoxP3 +细胞)是由单纯的〜100个细胞表示。的CD45 + CD4 +的FoxP3 +细胞的数量少,因此必须有大量的总细胞分离并在细胞是质量好于下游的研究,例如细胞因子分泌测定。此外,它可能是必要的,因为亚群中不足够高的数字表示来执行量化测定以肾脏从2-3只小鼠相结合。因此,肾单核细胞群体的可靠和有效的隔离是可取的,以便螺柱y随肾脏疾病相关的免疫学光谱。

传统上,肾单核细胞的分离,研究人员使用了多种酶消化,如胶原酶1A或II包括DNA酶1 1,5,12的。它公知的是胶原酶具有与批号和由公司制造的不同而不同,因此有必要滴定为最佳浓度和温育4,14,15的持续时间的酶活性。此外,用胶原酶消化添加时间为切碎肾成小块,就必须肾脏条在EDTA中加热(37℃)浴和额外的时间为孵育的孵育终止反应。此外,较少的不育性可以针对某些下游程序需要的细胞培养来实现。更重要的是,根据所涉及的研究者和所有的变量,它会导致变异跨实验室数据和解释。近年来,随着机械组织干扰/均质16的发展,胶原酶消化步骤是完全可以避免和肾脏2的简单机械破碎代替。在此,我们展示了肾脏免疫细胞的日常免疫细胞提取隔离一个简单而有效的方法。重要的是,这种技术可以适用于其他柔软和非纤维组织如肝和脑16。

Protocol

执行的所有协议的步骤进行了审查和密苏里州的动物护理和使用委员会大学(ACUC)的批准。对于这个协议,年龄15周雄性C57BL / 6小鼠利用虽然理论上在任何年龄任何啮齿动物可以用于实验。因为,这是一个非存活手术,安乐死放血和双边气胸实现。 1.肾脏灌注注:器官如心脏,肝脏和肾脏灌注消除可能与数据的解释干扰血液。因此,如果可能,我们始终灌…

Representative Results

可运行的板的数量取决于该能够可靠地提取出了肾脏的免疫细胞的数目。这里,我们证明运行2板,一个用于T淋巴细胞,一个用于巨噬细胞/树突状细胞的能力。在T淋巴细胞面板,我们先来看看前向散射(FSC)和侧向散射(SSC)模式,描绘感兴趣的人群, 如图1(左上点图)。接着,生存力的标记,在这种情况下,一个可固定活力染色(FVS510)用于排除在分析?…

Discussion

我们在这里提出了一个方法,以获得从肾脏的免疫细胞中的可靠和有效的方式。主要的修改的广泛使用的胶原酶消化步骤(组织机械破碎)保存约30分钟,并有大量活的免疫细胞的隔离下两个小时4肾脏样品花费。此外,根据我们的研究问题,我们现在只用一个单一的肾(其他肾脏可以用于通过Western印迹,免疫组织化学和mRNA分析通过PCR蛋白质分析)对我们的免疫细胞的分离和常规获得〜2×10 6</…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

This work is supported by a Research Grant from Dialysis Clinics Inc. and from the University of Missouri Research Board Grant.

Materials

Stomacher 80 Biomaster lab system Seward
Stomacher 80 Classic bags Seward BA6040/STR
Sorvall Legend XFR Centrifuge Thermo Scientific Or equivalent equipment 
Hemocytometer Electron Microscopy Sciences 63514-11
Analytical flow cytometer BD LSR-X20 Fortessa
Percoll  Sigma P1644
Dulbecco’s phosphate buffered saline 1X (DPBS) Gibco, Life Technologies 14190-250
Polypropylene tubes, no cap Becton Dickinson 352002
Fixable Viability Stain BD Biosciences  FVS510,  564406
Anti-CD16/32 (Clone: 93) EBioscience 14-0161
anti-CD45 (clone: 30-F11)  BV421  BD Pharmingen 103133/4
Anti-Foxp3 (Clone: FJK-16s) APC EBioscience 17-5773
Anti-CD127 (Clone: A7R34) PE/Cy7 Biolegend 135013/4
anti-CD44 (Clone: IM7) PerCP/Cy5.5 Biolegend 103031/2
anti-CD4 (Clone: RM4-5) APC-Cy7 Biolegend 100413/4
anti-CD8 (Clone: 53-6.7) BV785 Biolegend 100749/50
Anti-Ly6G (Clone: 1A8) FITC Biolegend 127605/6
Anti-CD11b (Clone: M1/70) PerCP-Cy5.5 Biolegend 101227/8
Anti-F4/80 (Clone: BM8) APC Biolegend 123115/6
Anti-CD11c (Clone: N418) BV785 Biolegend 117335/6
Anti-CD301 (Clone: LOM-14) PE-Cy7 Biolegend 145705/6
Anti-CD26 (Clone: H194-112) PE Biolegend 137803/4
100 μm filter  Fisher Scientific 22363548
Fisherbrand Tubes 50 ml Fisher Or equivalent equipment 
Fisherbrand Tubes 15 ml Fisher Or equivalent equipment 
Sucrose Fisher chemical S5-3
Transfer pipette fine tip Samco Scientific 232 Or equivalent equipment 
Flow Cytometery Staining Buffer Solution EBioscience 00-4222-26 Or equivalent equipment 
1X RBC Lysis Buffer EBioscience 00-4333-57 Or equivalent equipment 

Referenzen

  1. Ascon, D. B., et al. Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J. Immunol. 177 (5), 3380-3387 (2006).
  2. Ascon, M., et al. Renal ischemia-reperfusion leads to long term infiltration of activated and effector-memory T lymphocytes. Kidney Int. 75 (5), 526-535 (2009).
  3. Belliere, J., et al. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J. Am. Soc. Nephrol. 26 (6), 1363-1377 (2015).
  4. Chen, Z., et al. Collagenase digestion down-regulates the density of CD27 on lymphocytes. J. Immunol. Methods. 413, 57-61 (2014).
  5. Dong, X., et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int. 71 (7), 619-628 (2007).
  6. Hickey, F. B., Martin, F. Diabetic kidney disease and immune modulation. Curr. Opin. Pharmacol. , (2013).
  7. Kawakami, T., et al. Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions. J. Immunol. 191 (6), 3358-3372 (2013).
  8. Liu, X., et al. Isolating glomeruli from mice: A practical approach for beginners. Exp. Ther. Med. 5 (5), 1322-1326 (2013).
  9. Picot, J., Guerin, C. L., Le Van, K. C., Boulanger, C. M. Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology. 64 (2), 109-130 (2012).
  10. Ricardo, S. D., van, G. H., Eddy, A. A. Macrophage diversity in renal injury and repair. J. Clin. Invest. 118 (11), 3522-3530 (2008).
  11. Rodriguez-Iturbe, B., Pons, H., Herrera-Acosta, J., Johnson, R. J. Role of immunocompetent cells in nonimmune renal diseases. Kidney Int. 59 (5), 1626-1640 (2001).
  12. Vielhauer, V., et al. Efficient renal recruitment of macrophages and T cells in mice lacking the duffy antigen/receptor for chemokines. Am. J. Pathol. 175 (1), 119-131 (2009).
  13. Weisheit, C. K., Engel, D. R., Kurts, C. Dendritic Cells and Macrophages: Sentinels in the Kidney. Clin. J. Am. Soc. Nephrol. , (2015).
  14. Williams, S. K., McKenney, S., Jarrell, B. E. Collagenase lot selection and purification for adipose tissue digestion. Cell Transplant. 4 (3), 281-289 (1995).
  15. Yamamoto, T., et al. Deterioration and variability of highly purified collagenase blends used in clinical islet isolation. Transplantation. 84 (8), 997-1002 (2007).
  16. Zhou, J., Nagarkatti, P., Zhong, Y., Nagarkatti, M. Immune modulation by chondroitin sulfate and its degraded disaccharide product in the development of an experimental model of multiple sclerosis. J. Neuroimmunol. 223 (1-2), 55-64 (2010).

Play Video

Diesen Artikel zitieren
Nistala, R., Meuth, A., Smith, C., Annayya, A. Reliable and High Efficiency Extraction of Kidney Immune Cells. J. Vis. Exp. (114), e54368, doi:10.3791/54368 (2016).

View Video