Summary

坐姿到站姿和步行距离120%膝盖高度:新方法来评估铅肢体的动态姿势控制独立

Published: August 30, 2016
doi:

Summary

Here, we present a novel protocol to measure positional stability at key events during the sit-to-stand-to-walk using the center-of-pressure to the whole-body-center-of-mass distance. This was derived from the force platform and three-dimensional motion-capture technology. The paradigm is reliable and can be utilized for the assessment of neurologically compromised individuals.

Abstract

与感觉病理学个人行程必须在执行从坐到并开始步态(坐姿到步行:STW)上涨的共同任务难度。因此,在临床康复分离坐姿到站姿和步态开始 – 称为坐姿到站姿和步行(STSW) – 是平常。然而,适用于病理性评估一个明确的分析方法的标准化STSW协议还有待确定。

因此,一个目标为导向的协议定义是适合健康受损的个体通过要求上升阶段是从120%的膝盖高度发起了支持独立铅肢体的广泛基础。力的三维(3D)的光学捕获节段性移动轨蹄,和平台,以产生二维(2D)中心的压力(COP)轨迹COP和全身中心-OF-之间的水平距离的许​​可证跟踪质量(BCOM),减少其中的增加S在稳定性,但建议将代表穷人的动态姿势控制。

BCOM-COP距离表示有和没有正常化受试者的腿的长度。虽然COP-BCOM距离通过STSW各不相同,在座位起飞和初始脚尖离地(TO1)的主要运动事件中的步骤1和2规范化数据有由10位年轻的健康人进行5次重复试验低内和跨学科的变异。因此,患者上运动神经元损伤,或其他损害的患者群体,和规范数据在年轻健康个体之间的STSW范例的执行期间比较在键事件COP-BCOM距离为动态姿势稳定性的评价一种新颖的方法。

Introduction

影响感觉系统的临床病症,例如上运动神经元(UMN)损伤后中风,导致功能障碍包括虚弱,姿势的稳定性和痉挛的损失,这可以运动产生负面影响。恢复可与中风幸存者未能实现安全站立或行走1,2的功能里程碑的显著数量变量。

行走的离散实践和坐姿到站姿是UMN病理3,4后常见的康复任务,但是过渡动作经常被忽略。坐姿到步行(STW)是集坐姿到站姿(STS),步态启动(GI),和步行5连续的姿势,运动任务。

STW过程中反射犹豫的STS和GI,分离已经在患者中观察到与帕金森氏症6和慢性中风7中,除了较旧unimpaireð成年人8,但不是在年轻健康个体9。因此坐姿到待机和步行(STSW)被临床环境中通常实现的,并通过可变长度的暂停相站立时限定。然而,没有发表协议日期限定适于患者群体的上下文STSW动力学。

通常在STW研究最初的椅子高度为膝盖高度的100%(KH;地板到膝盖的距离),脚宽和GI铅肢是自我选择,双臂交叉于胸前和生态意义的任务语境的制约往往是缺席5-9。然而,患者发现从100%KH 10具有挑战性的上升和频繁采取更广泛的脚的位置与健康人相比,11,发起步态与患肢7,用自己的武器来产生动力7。

要启动的步态,在全身运动状态变化在purpos eful方向需要12。这是通过解偶联全身中心的质量来实现的:从中心的压力的(COP(BCOM在空间13都被认为是身体段的加权平均):将得到的地面反作用力的位置(GRF)载体14)。在胃肠道,快速定型后,向肢体的COP的横向运动的预期相位对摆动发生从而产生BCOM动量12,15。由此缔约方会议和BCOM是分开的,在它们之间的水平距离已被提议作为动态姿势控制16的量度。

COP-BCOM距离的计算需要缔约方会议和BCOM位置同时测量。 COP的标准计算如下所示公式(1)17:

式(1)

tp_upload / 54323 / 54323eq2.jpg“/>

公式3
(1)

其中M和部队代表分别约为力平台轴和定向GRF时刻。下标表示轴。原点是所述接触表面和所述力平台的原点之间的垂直距离,并且被认为是零。

推导BCOM位置的运动方法包括跟踪标记段的位移。身体分割运动的忠实代表可以通过使用群集从骨性标志置于远离刚性板标志,尽量减少软组织神器(CAST工艺18)来实现。为了确定BCOM位置,从个人身体段群众估计的基础上,尸体的工作19。三维(3D)运动系统的专有软件采用坐标近端和d的位置istal段的位置,以便:1)确定节段性长度,2)算术估计节段性群众,和3)计算节段性COM位置。这些模型然后能够根据节段间位置的净求和( 图1)在时间上在给定的点提供的3D BCOM位置估计。

因此,本文的目的是首先提出一个标准化STSW协议,该协议是有效的生态,包括从高座高度上升。先前已表明,STSW从120%的KH为100%的KH限制代低级BCOM垂直速度和GRF的的生物力学恍上升20,这意味着从120%提高KH为受损的个体容易(和更安全的)中。其次,要得到COP-BCOM的水平距离,以评估期间使用3D动作捕捉关键里程碑和过渡的动态姿势控制。这种做法,这在STSW在健康人是独立的肢体乐的广告20,提供功能恢复评价的前景。最后,初步数据STSW代表年轻健康个体的集合呈现,并且组中的内和跨学科的变化是为了与病理个人通知比较确定。

图1
图1. 2D BCOM计算。为了简单起见,这个例子是基于在2个维度,从3-联质量计算全腿的COM,其中各自的COM的位置(X,Y),和节段性质量(M 1的坐标, M 2,M 3)是已知的。段群众和节段性COM位置的位置,相对于所述实验室坐标系(LCS;产地:0,0),通过使用受试者体重和公布人体测量数据的运动分析系统的专用软件估计(见正文)。在x一第二ÿ腿COM位置,在3连质这个例子中,然后使用显示的公式的。 请点击此处查看该图的放大版本。

Protocol

该协议遵循人类参与者的测试,由伦敦南岸大学研究伦理委员会的批准(UREC1413 / 2014)规定的地方准则。 1.步态实验室制显然,可能被误解为标志的运动,消除环境日光以降低反射适当不必要的反射物体的捕获量。 打开运动捕获相机,专有跟踪软件,力平台放大器和外部模拟 – 数字(AD)转换器。等待一段时间以相机进行初始化。 安排相机确保有在捕获…

Representative Results

所有受试者上涨用脚置于双动力平台,用自己的非主导肢体领导的指示。与在5次重复的目标为导向的STSW任务从120%上升KH干净科目踏上了其他平台和3D基于光学的运动分析成功跟踪全身运动观察步态正常。同时COP和BCOM中侧(ML)和前后(AP)的座断和IC2(100%STSW周期),包括之间的位移:上升,暂停,步态起始(GI),步骤1和步骤2在图5A中分别示和图5B<…

Discussion

这里定义的坐姿到站姿和步行(STSW)协议可用于健康人或病人群体复杂的过渡运动期间测试动态姿势控制。该协议包括被设计为允许与病理的受试者参与的限制,并切断光纳入意味着它是生态上有效和目标定向。因为先前已经证明,铅肢和从高(120%KH)座上升STSW 20期间不从根本上影响任务动力学,此处描述的方法可以作为一个标准的协议被应用。这STSW协议具有有效性,因为相比于健康…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

笔者想感谢托尼·克里斯托弗,林赛在马郁兰伦敦大学国王学院和比尔·安德森在伦敦南岸大学为他们的实际支持。也谢谢埃莉诺·琼斯在伦敦大学国王学院,她在收集数据,该项目的帮助。

Materials

Motion Tracking Cameras Qualysis  (Qualysis AB Gothenburg, Sweden) Oqus 300+ n=8
Qualysis Track Manager (QTM) Qualysis  (Qualysis AB Gothenburg, Sweden) QTM 2.9 Build No: 1697 Proprietary tracking software 
Force Platform  Amplifier Kistler Instruments, Hook, UK 5233A n=4
Force Platform Kistler Instruments, Hook, UK 9281E n=4
AD Converter Qualysis  (Qualysis AB Gothenburg, Sweden) 230599
Light-Weight Wooden Walkway Section Kistler Instruments, Hook, UK Type 9401B01  n=2
Light-Weight Wooden Walkway Section Kistler Instruments, Hook, UK Type 9401B02  n=4
4 Point "L-Shaped" Calibration Frame Qualysis  (Qualysis AB Gothenburg, Sweden)
"T-Shaped" Wand Qualysis  (Qualysis AB Gothenburg, Sweden)
12mm Diameter Passive Retro reflective Marker Qualysis  (Qualysis AB Gothenburg, Sweden) Cat No: 160181 Flat Base
Double Adhesive Tape Qualysis  (Qualysis AB Gothenburg, Sweden) Cat No: 160188 For fixing markers to skin
Height-Adjustable Stool Ikea, Sweden Svenerik Height 43-58cmwith ~10cm customized height extension option at each leg
Circular (Disc) Pressure Floor Pad Arun Electronics Ltd, Sussex, UK PM10 305mm Diameter, 3mm thickness, 2 wire
Lower Limb Tracking Marker Clusters Qualysis  (Qualysis AB Gothenburg, Sweden) Cat No: 160145 2 Marker clusters, lower body with 8 markers (n=2)
Upper Limb Tracking Marker Clusters Qualysis  (Qualysis AB Gothenburg, Sweden) Cat No: 160146 2 Marker clusters, lower body with 6 markers (n=2)
Self-Securing Bandage Fabrifoam, PA, USA 3'' x 5'
Cycling Skull Cap Dhb Windslam
Digital Column Scale Seca 763 Digital Medical Scale w/ Stadiometer
Measuring Caliper Grip-On Grip Jumbo Aluminum Caliper – Model no. 59070 24in. Jaw
Extendable Arm Goniometer Lafayette Instrument Model 01135 Gollehon
Light Switch Custom made
Visual3D Biomechanics Analysis Software C-Motion Inc., Germantown, MD, USA Version 4.87

Referenzen

  1. Duncan, P. W., Goldstein, L. B., Matchar, D., Divine, G. W., Feussner, J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 23 (8), 1084-1089 (1992).
  2. Smith, M. T., Baer, G. D. Achievement of simple mobility milestones after stroke. Arch Phys Med Rehabil. 80 (4), 442-447 (1999).
  3. Langhorne, P., Bernhardt, J., Kwakkel, G. Stroke rehabilitation. Lancet. 377 (9778), 1693-1702 (2011).
  4. Veerbeek, J. M., et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 9 (2), e87987 (2014).
  5. Magnan, A., McFadyen, B., St-Vincent, G. Modification of the sit-to-stand task with the addition of gait initiation. Gait Posture. 4 (3), 232-241 (1996).
  6. Buckley, T. A., Pitsikoulis, C., Hass, C. J. Dynamic postural stability during sit-to-walk transitions in Parkinson disease patients. Mov Disord. 23 (9), 1274-1280 (2008).
  7. Frykberg, G. E., Aberg, A. C., Halvorsen, K., Borg, J., Hirschfeld, H. Temporal coordination of the sit-to-walk task in subjects with stroke and in controls. Arch Phys Med Rehabil. 90 (6), 1009-1017 (2009).
  8. Dehail, P., et al. Kinematic and electromyographic analysis of rising from a chair during a "Sit-to-Walk" task in elderly subjects: role of strength. Clin Biomech (Bristol, Avon). 22 (10), 1096-1103 (2007).
  9. Buckley, T., Pitsikoulis, C., Barthelemy, E., Hass, C. J. Age impairs sit-to-walk motor performance. J Biomech. 42 (14), 2318-2322 (2009).
  10. Roy, G., et al. The effect of foot position and chair height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis. Clin Biomech (Bristol, Avon). 21 (6), 585-593 (2006).
  11. Kubinski, S. N., McQueen, C. A., Sittloh, K. A., Dean, J. C. Walking with wider steps increases stance phase gluteus medius activity. Gait Posture. 41 (1), 130-135 (2015).
  12. Jian, Y., Winter, D. A., Ishac, M. G., Gilchrist, L. Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture. 1 (1), 9-22 (1993).
  13. Winter, D. A. Human balance and posture control during standing and walking. Gait Posture. 3 (4), 193-214 (1995).
  14. Cavanagh, P. R. A technique for averaging center of pressure paths from a force platform. J Biomech. 11 (10-12), 487-491 (1978).
  15. Halliday, S. E., Winter, D. A., Frank, J. S., Patla, A. E., Prince, F. The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait Posture. 8 (1), 8-14 (1998).
  16. Hass, C. J., Waddell, D. E., Fleming, R. P., Juncos, J. L., Gregor, R. J. Gait initiation and dynamic balance control in Parkinson’s disease. Arch Phys Med Rehabil. 86 (11), 2172-2176 (2005).
  17. Winter, D. A., Patla, A. E., Ishac, M., Gage, W. H. Motor mechanisms of balance during quiet standing. J Electromyogr Kinesiol. 13 (1), 49-56 (2003).
  18. Cappozzo, A., Catani, F., Croce, U. D., Leardini, A. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon). 10 (4), 171-178 (1995).
  19. Dempster, W. T., Gabel, W. C., Felts, W. J. The anthropometry of the manual work space for the seated subject. Am J Phys Anthropol. 17 (4), 289-317 (1959).
  20. Jones, G. D., James, D. C., Thacker, M., Jones, E. J., Green, D. A. Sit-to-Walk and Sit-to-Stand-and-Walk Task Dynamics are Maintained During Rising at an Elevated Seat-Height Independent of Lead-Limb in Healthy Individuals. Gait Posture. 48, 226-229 (2016).
  21. Qualysis AB. . Qualysis Track Manager User Manual. , (2011).
  22. Hoffman, M., Schrader, J., Applegate, T., Koceja, D. Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. J Athl Train. 33 (4), 319-322 (1998).
  23. Ren, L., Jones, R. K., Howard, D. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J Biomech. 41 (12), 2750-2759 (2008).
  24. C-Motion Wiki Documentation. . Tutorial: Building a Model. , (2013).
  25. Kainz, H., Carty, C. P., Modenese, L., Boyd, R. N., Lloyd, D. G. Estimation of the hip joint centre in human motion analysis: a systematic review. Clin Biomech (Bristol, Avon). 30 (4), 319-329 (2015).
  26. Harrington, M. E., Zavatsky, A. B., Lawson, S. E., Yuan, Z., Theologis, T. N. Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J Biomech. 40 (3), 595-602 (2007).
  27. C-Motion Wiki Documentation. . Coda Pelvis. , (2015).
  28. Bell, A. L., Brand, R. A., Pedersen, D. R. Prediction of hip joint centre location from external landmarks. Human movement science. 8 (1), 3-16 (1989).
  29. Eames, M. H. A., Cosgrove, A., Baker, R. Comparing methods of estimating the total body centre of mass in three-dimensions in normal and pathological gaits. Human movement science. 18 (5), 637-646 (1999).
  30. C-Motion Wiki Documentation. . Force Structures. , (2015).
  31. Martin, M., et al. Gait initiation in community-dwelling adults with Parkinson disease: comparison with older and younger adults without the disease. Phys Ther. 82 (6), 566-577 (2002).
  32. Bland, J. M., Altman, D. G. Measurement error. BMJ. 313 (7059), (1996).
  33. Hof, A. L. Scaling gait data to body size. Gait Posture. 4 (3), 222-223 (1996).
  34. Holden, J. P., Selbie, W. S., Stanhope, S. J. A proposed test to support the clinical movement analysis laboratory accreditation process. Gait Posture. 17 (3), 205-213 (2003).
  35. Baker, R. Gait analysis methods in rehabilitation. J Neuroeng Rehabil. 3, (2006).
  36. Gregory, C. M., Embry, A., Perry, L., Bowden, M. G. Quantifying human movement across the continuum of care: From lab to clinic to community. J Neurosci Methods. 231, 18-21 (2014).
  37. Pai, Y. C., Rogers, M. W. Segmental contributions to total body momentum in sit-to-stand. Medicine and Science in Sports and Exercise. 23 (2), 225-230 (1991).
  38. Hughes, M. A., Weiner, D. K., Schenkman, M. L., Long, R. M., Studenski, S. A. Chair rise strategies in the elderly. Clin Biomech (Bristol, Avon). 9 (3), 187-192 (1994).
  39. Medeiros, D. L., Conceição, J. S., Graciosa, M. D., Koch, D. B., Santos, M. J., Ries, L. G. The influence of seat heights and foot placement positions on postural control in children with cerebral palsy during a sit-to-stand task. Res Dev Disabil. 43-44, 1-10 (2015).
  40. Breniere, Y., Do, M. C. When and how does steady state gait movement induced from upright posture begin?. J Biomech. 19 (12), 1035-1040 (1986).
  41. Weerdesteyn, V., de Niet, M., van Duijnhoven, H. J., Geurts, A. C. Falls in individuals with stroke. J Rehabil Res Dev. 45 (8), 1195-1213 (2008).

Play Video

Diesen Artikel zitieren
Jones, G. D., James, D. C., Thacker, M., Green, D. A. Sit-to-stand-and-walk from 120% Knee Height: A Novel Approach to Assess Dynamic Postural Control Independent of Lead-limb. J. Vis. Exp. (114), e54323, doi:10.3791/54323 (2016).

View Video