Summary

Storstilet produktion af cardiomyocytter fra menneskelige pluripotente stamceller Ved hjælp af en meget reproducerbar lille molekyle-Based Differentiering Protocol

Published: July 25, 2016
doi:

Summary

Here, we present a robust, fast and scalable cardiomyocyte differentiation protocol for human pluripotent stem cells (hPSCs). Cardiomyocytes derived using this large-scale method can provide sufficient cell numbers for their effective use in human cardiovascular disease modeling, high-throughput drug screening, and potentially clinical applications.

Abstract

Maksimering gavn af menneskelige pluripotente stamceller (hPSCs) til forskning, sygdom modellering, farmaceutiske og kliniske anvendelser kræver robuste metoder til produktion i stor skala af funktionelle celletyper, herunder cardiomyocytter. Her demonstrerer vi, at den tidsmæssige manipulation af WNT, TGF-β, og SHH signalveje fører til højeffektive cardiomyocyte differentiering af enkelt-celle passerede hPSC linier i både statiske suspension og omrørt suspension bioreaktorsystemer. Anvender denne strategi resulterede i ~ 100% slå sphæroider, konsekvent indeholder> 80% kardial troponin T-positive celler efter 15 dages dyrkning valideret i flere hPSC linjer. Vi rapporterer også om en variation af denne protokol til brug med cellelinjer i øjeblikket ikke tilpasset encellede passage, hvis succes er blevet verificeret i 42 hPSC linjer. Cardiomyocytter genereres ved hjælp af disse protokoller udtrykker afstamning-specifikke markører og show forventede electrophysiological funktionaliteter. Vores protokol præsenterer en enkel, effektiv og robust platform til produktion i stor skala af humane cardiomyocytter.

Introduction

Humane pluripotente stamceller (hPSCs), herunder humane embryonale stamceller (hESCs) og inducerede pluripotente stamceller (hiPSCs), har mulighed for selv-fornyelse og evnen til at differentiere til celler i de tre embryonale kim lag 1,2. På grund af disse egenskaber, hPSCs en værdifuld og ubegrænset kilde til generering og skalerbar produktion af sygdomsspecifikke relevant celletyper til modellering human sygdom 3-5, til high-throughput lægemiddel-screening og toksicitet assays 6,7 og potentielt til kliniske anvendelser 8 . Generation af cardiomyocytter fra hPSCs giver mulighed for specifikt at undersøge mekanismerne i komplekse menneskelige hjerte-kar-sygdomme og deres mulige behandlinger, der tidligere uden for rammerne af vores kapacitet på grund af mangel på relevante dyremodeller og / eller tilgængeligheden af ​​berørte primære væv.

Alle førnævnte anvendelser af hPSCs necessitate produktionen af ​​massive antal af højt beriget og funktionelle cardiomyocytter. Således tilgængeligheden af en effektiv, reproducerbar og skalerbar in vitro hjerte-differentiering protokol egnet til flere hPSC linjer er afgørende. Konventionelle cardiomyocyte differentiering protokoller har ansat forskellige strategier såsom embryoid krop dannelse 9, co-kultur teknikker 10, induktion med cocktails af cytokiner 11 og protein transduktion metoder 12. På trods af fremskridt i disse teknikker, lider de fleste stadig af dårlig effektivitet, kræver dyre vækstfaktorer, eller tilbyde begrænset universalitet når du forsøger at bruge flere hPSC linjer. Til dato har disse udfordringer sat grænser for produktionen af hPSC-afledte cardiomyocytter for celleterapi studier i dyremodeller, samt i den farmaceutiske industri for drug discovery 13. Derfor er udviklingen af ​​robuste og overkommelige teknikker til store-skala produktion af funktionelle hPSC-afledte cardiomyocytter i skalerbare dyrkningssystemer vil i høj grad lette deres kommercielle og kliniske anvendelser.

I dette manuskript rapporterer vi udviklingen af ​​en omkostningseffektiv og integreret hjertedifferentiering system med høj effektivitet, reproducerbarhed og anvendelighed til hESCs og hiPSCs genereret fra en række forskellige kilder og dyrkningsmetoder, herunder en fremgangsmåde til produktion i stor målestok af højt berigede populationer af hPSC-afledte cardiomyocytter ved anvendelse af en bioreaktor. Derudover har vi optimeret denne protokol for hPSC linjer ikke er tilpasset feeder fri og / eller enkelt cellekultur, såsom nyetablerede hiPSCs eller store kohorter af hPSC linjer er relevante for analysen af ​​sygdom mekanisme.

Protocol

1. Udarbejdelse af Kultur Medier, Overfladebehandling af Cell Culture Plader og vedligeholdelse af udifferentierede hPSCs medier Forberedelse Bemærk: Der steriliseres mediet ved anvendelse af en 0,22 um filtreringsindretning og opbevares ved 4 ° C beskyttet mod lys i op til 4 uger. Reagens navne, leverandører og katalognumre er angivet i Materials tabel. For mus embryonale fibroblaster (MEF) Medium, kombinere 445 ml DMEM, 50 ml føtalt bovi…

Representative Results

For at etablere en simpel metode til storstilet differentiering af cardiomyocytter fra hPSCs, vi skabt en protokol, hvor cellerne oprindeligt blev behandlet med en WNT / β-catenin aktivator (CHIR99021) 16 og efterfølgende med hæmmere af WNT / β- catenin og transformerende vækstfaktor-β (TGF-β) pathways (IWP2 16 og SB431542 17, henholdsvis) og endelig en aktivator af den soniske hedgehog (SHH) pathway (purmorphamine) 17 (figur 1A)…

Discussion

Cardiomyocytter afledt hPSCs er en særdeles attraktiv kilde til brug i human sygdom modellering, narkotika screening / toksicitet og måske i fremtiden, regenerative behandlinger. En af de største hindringer til anvendelse af disse celler imidlertid er evnen til at give tilstrækkelig høj kvalitet materiale for deres effektive anvendelse. Ved hjælp af vores beskrevne protokol, tilbyder vi en metode, der overvinder denne begrænsning.

For nylig er syntetiske små molekyler rettet mod spec…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

This study was funded by grants provided from Royan Institute, Iranian Council of Stem Cell Research and Technology, the Iran National Science Foundation (INSF), the National Health and Medical Research Council of Australia (NHMRC; 354400), the National Heart Foundation of Australia/Heart Kids Australia (G11S5629), and the New South Wales Cardiovascular Research Network. HF was supported by a University International Postgraduate Scholarship from the University of New South Wales, Australia. RPH was supported by a NHMRC Australia Fellowship. The authors express their gratitude to the human subjects who participated in this research.

Materials

Knockout DMEM Life Technologies 10829018
Knockout Serum Replacement (KO-SR) Life Technologies 10828028
Glutamax Life Technologies 35050061
MEM Non-essential Amino Acids Life Technologies 11140-050
β-Mercaptoethanol Life Technologies 21985-023
Basic Fibroblast Growth Factor (bFGF) Miltenyi Biotec 130-093-843
RPMI1640 Life Technologies 11875093
DPBS, no calcium, no magnesium Life Technologies 14190144
DPBS Life Technologies 14287072
Attachment Factor (AF) Life Technologies S006100
ECM Gel Sigma-Aldrich E1270
Laminin Invitrogen 23017-015
DMEM Life Technologies 11965-092                                                                                                       
Fatal Bovine Serum (FBS) Life Technologies 16140-071
B27 minus insulin Gibco A18956-01
Penicillin/Streptomycin Life Technologies 15070063
0.05% Trypsin/EDTA Life Technologies 25300-054
Collagenase Type IV Life Technologies 17140-019
Calcium Chloride (CaCl2) Sigma-Aldrich C7902
Mitomycin C Bioaustralis BIA-M1183
CHIR99021 Miltenyi Biotec 130-104-172
IWP2 Miltenyi Biotec 130-105-335
SB431542 Miltenyi Biotec 130-095-561
Purmorphamine Miltenyi Biotec 130-104-465
ROCK inhibitor Y-27632 Miltenyi Biotec 130-104-169
Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich E6758
Poly Vinyl Alcohol (PVA) Sigma-Aldrich 363073
Gelatin Sigma-Aldrich G1890
Trypan Blue Bio-Rad 145-0013
Accumax  Innovative Cell Technologies Inc. AM105
Sigmacote  Sigma-Aldrich SL2 
CELLSPIN Integra Biosciences 183 001
Spinner flask with 1 pendulum, 100 ml  Integra Biosciences 182 023
Mouse Embryonic Fibroblasts (MEF) Prepared in-house (or commercially available)
Human pluripotent stem cell (hPSC) lines Prepared in-house (or commercially available)

Referenzen

  1. Thomson, J. A., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145-1147 (1998).
  2. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  3. Carvajal-Vergara, X., et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 465, 808-812 (2010).
  4. Vitale, A. M., Wolvetang, E., Mackay-Sim, A. Induced pluripotent stem cells: a new technology to study human diseases. Int. J. Biochem. Cell Biol. 43, 843-846 (2011).
  5. Sharma, A., et al. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circ Res. 115, 556-566 (2014).
  6. Zimmer, B., et al. Evaluation of developmental toxicants and signaling pathways in a functional test based on the migration of human neural crest cells. Environ Health Perspect. 120, 1116-1122 (2012).
  7. Diecke, S., Jung, S. M., Lee, J., Ju, J. H. Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med. 29, 547-557 (2014).
  8. Kimbrel, E. A., Lanza, R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat. Rev. Drug Discov. 14, 681-692 (2015).
  9. Kehat, I., et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 108, 407-414 (2001).
  10. Mummery, C., et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 107, 2733-2740 (2003).
  11. Laflamme, M. A., et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 25, 1015-1024 (2007).
  12. Fonoudi, H., et al. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells. PLoS One. 8, e55577 (2013).
  13. Zhu, W. Z., Hauch, K. D., Xu, C., Laflamme, M. A. Human embryonic stem cells and cardiac repair. Transplant Rev (Orlando). 23, 53-68 (2009).
  14. Jozefczuk, J., Drews, K., Adjaye, J. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp. (64), e3854 (2012).
  15. Stover, A. E., Schwartz, P. H. Adaptation of human pluripotent stem cells to feeder-free conditions in chemically defined medium with enzymatic single-cell passaging. Methods Mol Biol. 767, 137-146 (2011).
  16. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci. 109, E1848-E1857 (2012).
  17. Gonzalez, R., Lee, J. W., Schultz, P. G. Stepwise chemically induced cardiomyocyte specification of human embryonic stem cells. Angew Chem Int Ed Engl. 50, 11181-11185 (2011).
  18. Fonoudi, H., et al. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Stem Cells Transl Med. , (2015).
  19. Abbasalizadeh, S., Larijani, M. R., Samadian, A., Baharvand, H. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods. 18, 831-851 (2012).
  20. Larijani, M. R., et al. Long-term maintenance of undifferentiated human embryonic and induced pluripotent stem cells in suspension. Stem Cells Devt. 20, 1911-1923 (2011).
  21. Baharvand, H., Larijani, M. R., Yousefi, M. Protocol for expansion of undifferentiated human embryonic and pluripotent stem cells in suspension. Methods Mol Biol. 873, 217-226 (2012).
  22. Burridge, P. W., et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 11, 855-860 (2014).
  23. Minami, I., et al. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell reports. 2, 1448-1460 (2012).
  24. Buskirk, A. R., Liu, D. R. Creating small-molecule-dependent switches to modulate biological functions. Chem Bio. 12, 151-161 (2005).
  25. McKinsey, T. A., Kass, D. A. Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nat Rev Drug Discov. 6, 617-635 (2007).
  26. Niebruegge, S., et al. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng. 102, 493-507 (2009).
  27. Bauwens, C. L., et al. Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue Eng Part A. 17, 1901-1909 (2011).
  28. Hwang, Y. S., et al. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc Natl Acad Sci U S A. 106, 16978-16983 (2009).
  29. Nguyen, D. C., et al. Microscale generation of cardiospheres promotes robust enrichment of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports. 3, 260-268 (2014).
  30. Kempf, H., et al. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports. 3, 1132-1146 (2014).
  31. Hemmi, N., et al. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med. 3, 1473-1483 (2014).
  32. Tohyama, S., et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell stem cell. 12, 127-137 (2013).
  33. Nunes, S. S., et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat meth. 10, 781-787 (2013).
  34. Devalla, H. D., et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med. 7, 394-410 (2015).
check_url/de/54276?article_type=t

Play Video

Diesen Artikel zitieren
Fonoudi, H., Ansari, H., Abbasalizadeh, S., Blue, G. M., Aghdami, N., Winlaw, D. S., Harvey, R. P., Bosman, A., Baharvand, H. Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol. J. Vis. Exp. (113), e54276, doi:10.3791/54276 (2016).

View Video