初代ヒト胎盤(絨毛)及び脱落膜の器官培養を確立するための簡単な方法が記載されています。絨毛および脱落膜器官培養は、人間の母体胎児の界面での病因を研究するための貴重なツールです。通性細胞内細菌リステリア菌による感染が実証されています。
胎盤は、種間の解剖学的変動の大きな度合いを示しています。最良のヒト胎盤の生物学及び病態生理学を理解するには、ヒトの細胞および組織を用いた実験を設計することが不可欠です。器官培養の利点は、三次元(3D)構造組織および細胞外マトリックスの維持です。ここで説明する方法の目標は、ex vivoでヒトの妊娠組織器官培養し、72〜96時間のために彼らの健全な培養維持の成功確立です。プロトコルは、手術室から新鮮な研究承諾、胎盤および脱落膜標本の即時処理を詳述します。これらは、そうでなければ廃棄される豊富な標本です。 3Dの器官培養を確立するために、適切な組織を選択する方法についての形態学的な詳細を含むこれらの試料の無菌コレクションの詳細については、提供されています。胎盤絨毛および脱落膜組織を2〜3mmで粉々に顕微解剖されていますそして数日間の行列が並ぶトランスウェルフィルター上に別々に配置し、培養しました。絨毛および脱落膜器官培養は、ヒト宿主 – 病原体相互作用の研究に適しています。他のモデル生物と比較して、これらのヒトの培養物は、宿主特異性の可変パターンを示す病原体感染のメカニズムを調べるために特に有利です。例として、我々は臨床的に関連する、通性細胞内細菌性病原体リステリア菌で胎盤および脱落膜器官培養の感染を実証します。
母体胎児の界面での感染症や炎症は、女性と子供の罹患率と死亡率の主要な供給源を表します。病原体はこれらの組織に感染する方法を理解することは、早産や胎児死亡などの疾患を予防し、治療するための新規戦略の開発のために重要です。しかし、母体胎児のインターフェイスの高い種間のばらつきは、実験調査を複雑にしています。さらに、ほとんどの微生物病原体は、このように多くの動物モデルは、完全にヒトの感染症を再現することはできません、ホスト特異性を示します。このような、リステリア菌などの他は、宿主特異1の複数の中間レベルを示しているが、特定の生物( インフルエンザ菌 、 チフス菌 、 コレラ菌 、および多数の他)は、ヒトにおいて厳密に病原性です。特異性は、免疫回避4、普及3、植民地化2を含む、病因の多くの側面に記載されているホスト</s>アップ、および栄養取得5。したがって、最適なホストモデル系を選択することが最も重要です。
胎児細胞と母体の血液から成る、胎盤は急速に妊娠6にわたって開発器官です。簡単に言えば、ヒト胎盤は、母体血を浴びた胎児「絨毛」ツリー状の構造で構成されています。ガスおよび栄養交換が絨毛木の表面に並ぶ栄養芽細胞と呼ばれる特殊な胎児の細胞層にわたって発生します。母体の子宮粘膜内層、非妊娠女性に子宮内膜と呼ばれる、胎児胎盤ユニットを収容するために脱落膜に構造的および機能的に変換します。絨毛木は脱落膜にセル列を固定から移動絨毛外栄養膜(EVT)によって子宮に固定されています。母体胎児のインターフェイスは、したがって、脱落膜と胎盤から構成されています。
器官培養技術は、ここに記載さL.を含むどこで、どのように臨床的に関連するヒト病原体を検査するために使用されていますmonocytogene sおよびトキソプラズマ原虫は 、胎盤関門2,7を渡ります。これらのex vivoでの器官培養は、 生体組織構造内で複製し、間違いなく生理的に人間の胎盤形成のための関連性の高いモデル系です。追加の培養技術は、3Dマトリックスに埋め込まれた全臓器外植片、器官スライス、および組織または幹細胞オルガノイドを含みます。これらのオプションの詳細については、総合的な最近のレビュー8を参照してください。このプロトコルは脱落膜と胎盤絨毛の別々の培養のためであることに注意してください。胎盤細胞と脱落膜細胞との間の相互作用を研究するため、共培養技術が好ましい場合があります。私たちは、栄養膜媒介脱落膜血管リモデリング9-11を研究する研究者によって使用され、以前に記載絨毛-脱落膜共培養技術に興味のある読者を参照してください。
近交系、トランスジェニックおよびノックアウトマウス系統は、堅牢なメカニズムをテストするための実験系に作用することができます。しかし、コア遺伝物質の一般的な保全にもかかわらず、マウスとヒトの機能的ゲノムは調節要素23に有意な差を示しています。これは、動物モデルにおいて有望な前臨床試験は、時には、ヒト患者に再現されていないこと、したがって、驚くべきことではありません。胎盤は、このように、ヒトの疾患24の研究のための動物モデルより少ない理想的なその後のレンダリング、非常に高い種間の多様性を示しています。ヒトおよびマウスの免疫学25、および胎盤の解剖学的構造の顕著な発散進化の顕著な違いの両方を認識し、実験的調査のための人間の妊娠組織のex vivo器官培養の使用を考慮することが賢明です。
このプロトコルで説明、写真画像、および教育ビデオは、上の研究者に指示しますECMコーティングされたトランスウェル組織培養インサート上で絨毛および脱落膜器官培養を確立する方法について説明します。この手法の利点は、特に、このような3次元埋め込みマトリックスまたは器官切片培養のような代替方法と比較して、マイクロ切開の相対的な単純性及び機械的支持のトランスウェルシステムを含みます。膜支持体上の器官培養のサスペンションは、すべての組織表面での栄養交換を可能にし、生存率は、短期培養(絨毛培養のための96時間、脱落膜培養のため72時間).This技術は、組織でのヒト胎盤生物学を研究することが可能のために維持されています紛れもなくそれ以上の生物学的に関連する単層細胞培養モデルよりレベル、。
このプロトコルの中で最も重要なステップは、器官培養のための適切な絨毛および脱落膜片の顕微解剖です。組織の最適片のための研究者を支援するために写真的に( 図2Aおよび図3A)を実証しています妊娠標本の可視化が新しく追加されました。これらの細胞はECMに移行し、膜に絨毛を固定するのに役立ちますように、その枝EVTの列に終了絨毛木を選択することが特に重要です。器官培養の両方のタイプのために慎重かつゆったりとした方法で、ピペッティングによりメディアの変更時に組織への障害を最小限に抑えることが有用です。
この技術は、最小限の困難を提示します。機会に、標本は、汚染を示しています。汚染は、通常の細菌(時々ポリ微生物)であり、そして唯一の文化の中で1-2日後に明らかになりました。汚染が観察されたら、漂白剤は、培養物は廃棄し、適用されるべきであり、組織培養インキュベーターは、長期の問題を防ぐために滅菌しました。子宮内感染では、手術中に、収穫/処理検体中、または器官培養メンテナンス時:汚染が発生する可能性のあるいくつかの可能な方法があります。収穫と処理手順は、ほとんどの時間です汚染のための場所を導入します。したがって、試料を収集し、顕微解剖時に操作される時間の量を低減することが重要です。これは、周囲、非無菌環境への試料の曝露を減らすことになります。実験室の設定に応じて、解剖顕微鏡は、無菌の組織培養フードの内側に配置することができます。
医学的に関連する病原体L.感染後器官培養の組織病 理学的分析モノサイトゲネスは 、プロトコルの一つの可能なアプリケーションとしてここに示されています。病原体に対するヒト宿主応答に感染利回り新しい洞察後の両方の細菌と宿主免疫細胞の免疫蛍光局在。脱落膜器官培養は、マウス脱落膜マクロファージの防御機能26,27の欠陥を示す興味深いレポートを含むin vivoでのマウスの感染症、から生成されたデータを検討する補完的なex vivoでの実験手法となる恐れがあります。さらに、人間の組織培養物は、Lのいくつかの同系系統からなる競争接種物として、混合感染戦略において使用することができますモノサイトゲネス 。器官培養の競争感染は、ヒト宿主内の毒性因子の妥当性をテストするための感度の高い方法です。この方法の制約は、短期培養(絨毛培養のための96時間、脱落膜培養のための72時間)に制限されている組織の生存率、です。これは、L.として急成長中の微生物に感染するのに最適ですモノサイトゲネスが、より長い培養は、確立し、組織を介して拡散するのに時間がかかる病原体のために必要があるかもしれません。
妊娠合併症のグローバルな負担を軽減するために、研究は、人間の母体胎児のインターフェイスの病態生理を理解することに焦点を当てる必要があります。細菌、真菌、および妊娠や胎児感染の合併症を壊滅的な胎児の原因に母親から渡るウイルス性病原体。実験室の肛門のインビボ感染制御MALSは、典型的には、病原体がコロニーを形成し、臓器28間の輸送方法を対処するためのゴールドスタンダードと考えられています。胎盤の解剖学的構造は、哺乳動物種間で顕著に変化するので、それは研究戦略にヒト組織を組み込むことが最も重要です。ヒト絨毛および脱落膜の器官培養は、宿主 – 病原体相互作用を調べるために関連性の高いモデル系です。この重要な、まだよくわかっていない臓器を研究するために、研究者は、このような、ここで説明したように器官培養戦略を使用して、そうでなければ捨てヒト胎盤および脱落膜標本の豊富を活用することができます。
The authors have nothing to disclose.
We are grateful to Cristina Faralla and David Lowe for helpful discussions. We acknowledge Mark Weinstein and San Francisco General Hospital Pathology Department for expert advice. This work was supported by National Institute of Health grants R01AI084928 and Burroughs Wellcome Fund 41259 to A.I.B; G.A.R. was supported by F32AI108195, Society for Pediatric Pathology Young Investigator Research grant, and University of California Partnerships for Faculty Diversity President’s Post-doctoral Fellowship.
Sterilization pouches | Fisher Scientific | 01-812-54 | For autoclaving individual dissecting tools |
Fine mesh strainer | Cuisinart (Amazon.com) | NA | Wrap completely in aluminum foil and autoclave prior to tissue collection. |
Carboy with spigot | Fisher Scientific | 03-007-647 | For large volume preparation of Wash buffer. |
Ice packs | Nortech labs | GB8818 | These do not have to be purchased, rather they can be recycled/reused from any routine laboratory shipment that includes them in the packaging. |
70% Ethanol | VWR | V1001 | 70% solution made by adding dH20 to 190 or 200 proof research grade alcohol. |
10% Bleach | Waxie Sanitary Supply | CLO 30966 | 10% solution made by adding dH20. |
Light Box | Litebox Lumina (dickblick.com) | 55305-2009 | Note replacement bulbs also purchased on Blick (55305.0100) |
Micro dissecting forceps | Stoelting | 52102-43 | 4in, 1×2 0.5mm, Slight Curve |
Micro dissecting forceps | Stoelting | 52102-06 | 4in, Straight Fine, Sharp |
Micro dissecting vannas spring scissors | Stoelting | 52130-01P | McPherson-Vannas Spring Scissors, 8.5cm, 0.33 Tip, Slight Curve |
Dissecting microscope | Leica Microsystems | MZ16 or M60 | We have had success with the listed models. External gooseneck flexible light sources are helpful but not necessary. |
50 mL conical tubes | Sigma-Aldrich (Corning) | CLS4558 | |
Phosphate Buffered Saline | Gibco (ThermoFisher Scientific) | 10010023 | We purchase from our university Tissue Culture Core facility, alternate options such as this are available. |
10X Phosphate Buffered Saline | Teknova | P0195 | For preparation of Wash buffer we use 10X PBS |
DMEM/F-12 nutrient mixture (Ham's) with GlutaMAX | Gibco (Life Technologies) | 10565-018 | We purchase this specific media formulation, containing 2.438 g/L sodium bicarbonate, 55 mg/L sodium pyruvate, and 4.5 g/L glucose |
Gentamicin | Thermofisher Scientific | 15710072 | 1000X stock. Recommend to prepare and store aliquots at -20 °C to avoid freeze/thaw. |
Penicillin/Streptomycin | Gibco (ThermoFisher Scientific) | 15140-122 | 100X stock. Recommend to prepare and store aliquots at -20 °C to avoid freeze/thaw. |
Amphotericin B | Gibco (ThermoFisher Scientific) | 15290-018 | 500X stock. Recommend to prepare and store aliquots at -20 °C to avoid freeze/thaw. |
progesterone | Sigma-Aldrich | P8783 | A 1 mM stock solution is made by reconstituting 15.7 mg progesterone powder in 15.7 mL Ethanol and adding 34.3 mL PBS. Solution is sterile filtered, aliquoted, and stored at -20 °C. |
17β-estradiol | Sigma-Aldrich | E2758 | A 10 μM stock solution is made by reconstituting 13.5 mg estradiol powder in 10 mL ethanol and adding 40 mL PBS. Solution is sterile filtered, aliquoted, and stored at -20 °C. |
Bottle-top vaccum filter (0.22 μm) | Sigma-Aldrich (Corning) | CLS430769 | For sterile filtration of Collection media after preparation |
6-well tissue culture plate | BD Falcon | 353224 | Polystyrene, Tissue culture treated |
6-well transwells | Millipore | PICM03050 | Insert – 30mm diameter, 0.4μm pore size hydrophilic PTFE membrane |
Extracellular Matrix (for example, Matrigel Matrix) | BD Biosciences | 354234 | We have utilized Matrigel Matrix in our studies. It is a solid at room temperature and at -20 °C. Avoid repeat freeze/thawing. Thaw bottle to viscous solution at 4 °C, and prepare ~300μL aliquotsin the cold room with chilled pipette tips. Store aliquots at -20 °C. |
Paraformaldehyde, 16% w/v aqueous solution | Alfa Aesar | 30525-89-4 | For tissue fixation, a fresh preparation of 4% paraformaldehyde is made by diluting this stock in PBS. |
Tissue culture incubator, maintained at 37 °C, 5% CO2, 3% oxygen (optional for villous organ cultures) | For some experiments, hypoxia may be preferred. This can be established multiple ways, including addition of exogenous nitrogen via gas cylinder, Tygon tubing, and a regulator. | ||
Bench top centrifuge |