Manipulações transgénicas e edição genoma são críticos para testar funcionalmente o papel dos genes e elementos -regulatory cis. Aqui, um protocolo detalhado para microinjecção a geração de modificações genómicas (incluindo construções Tol2 mediadas repórter fluorescentes transgene, TALENS, e CRISPR) é apresentada para o peixe modelo emergente, a Gasterosteus aculeatus.
O peixe Gasterosteus aculeatus emergiu como um poderoso sistema para o estudo da base genética de uma larga variedade de características morfológicas, fisiológicas e comportamentais fenótipos. Os notavelmente diferentes fenótipos que evoluíram como populações marinhas se adaptar a ambientes de água doce incontáveis, combinados com a capacidade de atravessar formas marinhas e de água doce, fornecer um sistema de vertebrados rara em que a genética pode ser usada para mapear as regiões genômicas controlar evoluiu características. Excelentes recursos genômicos estão agora disponíveis, facilitando a análise genética molecular das alterações evoluídos. Enquanto experimentos de mapeamento gerar listas de genes candidatos interessantes, manipulações genéticas funcionais são necessários para testar o papel destes genes. regulação do gene pode ser estudada com plasmídeos repórter transgénicos e BACs integrado no genoma usando o sistema de transposase Tol2. Funções de genes candidatos específicos e elementos cis -regulatory pode ser avaliada através da indução de alvomutações com reagentes de edição genoma TALEN CRISPR e / Cas9. Todos os métodos requerem a introdução de ácidos nucleicos em embriões stickleback uma célula fertilizada, uma tarefa feita desafiador pelo córion espessura de embriões stickleback eo relativamente pequeno e fino blastomere. Aqui, um protocolo detalhado para microinjecção de ácidos nucleicos em embriões stickleback é descrita para aplicações transgénicos e de edição de genoma para estudar a expressão e função do gene, bem como técnicas para avaliar o sucesso de transgénese e recuperar linhas estáveis.
Um componente fundamental de compreensão de como a biodiversidade surge é a determinação das bases genéticas e de desenvolvimento de alterações fenotípicas evoluíram na natureza. O peixe Gasterosteus aculeatus, Gasterosteus aculeatus, emergiu como um excelente modelo para o estudo da base genética da evolução. Sticklebacks sofreram muitas mudanças evolutivas adaptativas como peixes marinhos colonizaram ambientes de água doce incontáveis em todo o hemisfério norte, resultando em morfológica dramática, fisiológicas e alterações comportamentais 1. Os genomas de indivíduos a partir de vinte e um populações stickleback foram sequenciados e montados, e um mapa de ligação de alta densidade foi gerado para melhorar ainda mais a montagem de 2,3. Experiências de mapeamento genético identificaram regiões genómicas subjacente fenótipos evoluídos 4-6, e em alguns casos, os papéis funcionais de genes candidatos específicos foram testados 7,8. Um número de regiões genômicas subjacentes alterações morfológicas foram identificados com genes candidatos promissores, mas estes candidatos ainda não foram testados funcionalmente 9-12. Além disso, sticklebacks são modelos comuns para estudos de genética populacional / genômica 13,14, especiação 15, o comportamento 1, endocrinologia 16, ecotoxicologia 17, imunologia e parasitologia 18 19. Estudos futuros em cada um desses campos serão beneficiados com a capacidade de executar manipulações genéticas funcionais em sticklebacks. Além manipulando as suas sequências de codificação, os papéis dos genes candidatos pode ser avaliada através do estudo as suas sequências -regulatory cis e por funcionalmente aumentando, diminuindo ou eliminando a expressão do gene candidato. Métodos de microinjeção e transgenia em sticklebacks estão bem estabelecidos 7,8,20 e foram inicialmente desenvolvido utilizando uma mediada por meganucleasemétodo 21 descrito pela primeira vez em medaka 22. O método de microinjeção modificado aqui apresentado foi otimizado para ambos transgênese Tol2 mediada e, recentemente, desenvolveu reagentes edição do genoma incluindo TALENS e CRISPR.
Mudanças a cis -regulatory elementos são pensados para ser crítico para a evolução morfológica, como cis -regulatory mudanças podem evitar as consequências negativas pleiotrópicos de codificação de mutações 23. Portanto, testando e comparando seqüências -regulatory cis putativos tornou-se um objetivo central de um número crescente de estudos evolutivos. Além disso, a maioria das variantes de doenças humanas são variantes reguladoras 24,25, e sistemas modelo de vertebrados são extremamente necessários para estudar a função elemento -regulatory cis e da lógica. Os peixes que fertilize seus embriões externamente em grandes números oferecem sistemas de vertebrados poderosas para estudar Regulamentação cis. O sistema de transposão Tol2, em que FOREIDNA gn para ser integrado no genoma é ladeado por sites e vinculativo Tol2 transposase co-injectados com mRNA transposase Tol2, trabalha com alta eficiência para integrar com sucesso plasmídeo constrói-se em genomas de peixes 26 – 28. Tipicamente, um intensificador de potencial é clonada a montante de um promotor basal (tais como hsp70l 29) e o gene repórter fluorescentes tais como a EGFP (proteína fluorescente verde melhorada) ou mCherry em uma espinha dorsal Tol2 e injectados com ARNm da transposase 26. Observação de expressão do repórter fluorescente, quer em embriões ou crias com transgenes integrados estavelmente injectados, fornece informação sobre a regulação espaço-temporais da expressão do gene dirigido pelo potenciador putativo. Em experiências adicionais, os potenciadores validados pode ser utilizado para dirigir a sobre-expressão específica de tecido dos genes de interesse.
Para a análise das regiões -regulatory cis maiores, de alta qualidade em grande inserção genombibliotecas de IC utilizando cromossomos artificiais bacterianos (BACs) foram construídos para ambas as marinhas e de água doce sticklebacks 30. Estes BACs pode ser recombineered para substituir um gene com um gene repórter fluorescente, no contexto de uma grande (150-200 kb) região genómica 31. O repórter fluorescente é então expresso num padrão espaço-temporal, tal como determinado por sequências reguladoras dentro do BAC. Para os estudos em peixes, locais Tol2 pode ser adicionado ao CCB para facilitar a integração genómica 32,33. Nas fases posteriores de desenvolvimento quando a hibridação in situ é tecnicamente difícil, a leitura de fluorescência do BAC pode ser usado para estudar os padrões de expressão de genes, como tem sido demonstrado para stickleback osso proteína morfogenética 6 (BMP6) 20. Além disso, os padrões de expressão fluorescentes em um indivíduo pode ser rastreados ao longo do tempo, o que não pode ser conseguido com a hibridização in situ. BACs pode também ser usado para adicionar uma additional cópia de uma região genómica de aumentar a dosagem de um gene de interesse.
Para o estudo da função do gene, genoma de edição é um campo explosivamente expansão que pode ser utilizado para produzir alterações específicas para sequências genómicas em uma ampla variedade de organismos 34. Transcrição nucleases efetoras ativador-like (TALENS) são nucleases modulares, específicos de sequência originalmente isoladas de patógenos de plantas que podem ser precisamente projetados para ligar directamente a uma sequência genômica de escolha e gerar uma cadeia dupla quebrar 35,36. Agrupamentos regularmente interespaçadas palindr�icas repetições curtas (CRISPR) / CAS sistemas foram originalmente encontrada em bactérias e utilizar um guia de RNA e da proteína Cas9 para gerar um intervalo de uma sequência de ADN alvo complementar para o guia 37. A reparação posterior da quebra de cadeia dupla criada por ambos os TALENS e CRISPR muitas vezes deixa para trás uma pequena inserção ou deleção, o que pode prejudicar a função da sequência alvo35-37. Em sticklebacks, TALENS têm sido utilizados para interromper a expressão do gene por direccionamento um intensificador de 20, e ambos TALENS CRISPR e ter sucesso na produção de mutações em sequências de codificação (dados não publicados). Um protocolo detalhado para a geração de CRISPR para uso em peixes-zebra pode ser utilizada como orientação para desenvolver CRISPR para sticklebacks 38.
Transgênicas e genoma experimentos de edição requerem introdução de ácidos nucleicos em um embrião de uma célula recém-fertilizado. Ao introduzir a ferramenta transgene ou genoma de edição no início do desenvolvimento, o número de células filhas geneticamente manipuladas no embrião é maximizada. embriões injectados são então visualmente pesquisadas quanto a fluorescência ou molecularmente rastreados para modificações do genoma. Se as células que contribuem para a linha germinal são orientados com sucesso, o transgene ou a mutação pode ser passada para um subconjunto de prole, mesmo quando letalidade pós-injecção é alta. Os peixes de mosaico pode ser outcrossed ouentrecruzadas e os seus descendentes selecionados para recuperar os alelos mutantes ou um transgene integrado de forma estável de interesse. Este protocolo descreve métodos para a introdução de transgenes e edição de reagentes genoma em embriões stickleback unicelulares e monitoramento para modificações genômicas de sucesso.
Injectáveis embriões stickleback unicelulares para transgenia ou edição genoma apresenta três desafios principais. Em primeiro lugar, em relação aos embriões de peixe-zebra, o stickleback embrionária córion é difícil e muitas vezes vai quebrar agulhas. Este problema pode ser parcialmente ultrapassada pela utilização de micropipetas de vidro grosso e mais forte e injectando perpendicular ao córion (ver protocolo, a Figura 2). Assegurar que o mínimo possível de água é adicionada a…
The authors have nothing to disclose.
Este trabalho foi financiado em parte pelo NIH R01 # DE021475 (CTM), um NIH Predoctoral Training Grant 5T32GM007127 (PAE), e um NSF Graduate Research Fellowship (NAE). Agradecemos a Kevin Schwalbach para a realização de recombineering BAC e injeções, Nick Donde para gerar dados de sequenciamento Sanger CRISPR, e Katherine Lipari para feedback útil sobre o protocolo de injeção.
Stereomicroscope with transillumination | Leica | S6e/ KL300 LED | |
Manual micromanipulator | Applied Scientific Instrumentation | MM33 | Marzhauser M33 Micromanipulator |
Pressure Injecion system | Applied Scientific Instrumentation | MPPI-3 | |
Back pressure unit | Applied Scientific Instrumentation | BPU | |
Micropipette holder kit | Applied Scientific Instrumentation | MPIP | |
Magnetic base holder | Applied Scientific Instrumentation | Magnetic base | |
Foot switch | Applied Scientific Instrumentation | FSW | |
Iron plate (magnetic base) | Narishige | IP | |
Flaming/Brown Micropipette Puller | Sutter Instrument | P-97 | |
Disposable transfer pipettes | Fisher | 13-711-7M | |
0.5% phenol red in DPBS | Sigma | P0290 | injection tracer |
#5 forceps, biologie dumoxel | Fine Science Tools | 11252-30 | for needle breaking |
Micropipette Storage Jar | World Precision Instruments | E210 | holds needles |
6", 6 teeth per inch plaster drywall saw | Lenox | 20571 (S636RP) | hold eggs for injection |
13 cm x 13 cm glass plate | any hardware store | – | |
Borosilicate glass capillaries, 1.0 mm OD/0.58 mm ID | World Precision Instruments | 1B100-F4 | *harder glass than zebrafish injection capillaries |
150 x 15mm petri dish | Fisher | FB0875714 | raise stickleback embryos |
35 x 10mm petri dish | Fisher | 08-757-100A | store eggs pre-injection |
Instant Ocean Salt | Instant Ocean | SS15-10 | |
Sodium Bicarbonate | Sigma | S5761-500G | |
Tricaine methanesulfonate/MS-222 | Western Chemical Inc | MS222 | fish anaesthesia/euthanasia |
Sp6 transcription kit | Ambion | AM1340 | For transcription of TALENs and transposase mRNA |
RNeasy cleanup kit | Qiagen | 74104 | purify transposase or TALEN RNA |
QiaQuick PCR cleanup kit | Qiagen | 28104 | clean up plasmids for injection |
Proteinase K 20 mg/ml | Ambion | AM2546 | for DNA preparation |
Nucleobond BAC 100 kit | Clontech | 740579 | for BAC DNA preparation |
NotI | NEB | R0189L | |
Phusion polymerase | Fisher | F-530L | |
Qiagen PlasmidPlus Midi kit | Qiagen | 12943 | contains endotoxin rinse buffer |
QIAQuick Gel Extraction | Qiagen | 28704 | for sequencing induced mutations |
Phenol:chloroform:Isoamyl alcohol | Sigma | P2069-100ML | |
Sodium acetate | Sigma | S2889-250G | |
Ethanol (molecular biology grade) | Sigma | E7023-500ML | |
Agarose | Sigma | A9539 | |
50X Tris-acetate-EDTA buffer | ThermoFisher | B49 | |
0.5-10KbRNA ladder | ThermoFisher | 15623-200 | |
Nanodrop Spectrophotometer | Thermo Scientific | Nanodrop 2000 | |
Paraformaldehyde | Sigma | 158127-500G | |
10X PBS | ThermoFisher | 70011-044 | |
1kb Plus DNA Ladder | ThermoFisher | 10787-018 | |
Potassium Chloride | Sigma | P9541-500G | |
Magnesium Chloride | Sigma | M8266-100G | |
NP-40 | ThermoFisher | 28324 | |
Tween 20 | Sigma | P1379-500ML | |
Tris pH 8.3 | Teknova | T1083 | |
12-strip PCR tube | Thermo Scientific | AB-1113 |