Here, we present protocols to perform both ambient mass spectrometry imaging (MSI) of tissues and in-situ live single cell MS (SCMS) analysis using the single-probe, which is a miniaturized multifunctional device for MS analysis.
Mass spectrometry imaging (MSI) and in-situ single cell mass spectrometry (SCMS) analysis under ambient conditions are two emerging fields with great potential for the detailed mass spectrometry (MS) analysis of biomolecules from biological samples. The single-probe, a miniaturized device with integrated sampling and ionization capabilities, is capable of performing both ambient MSI and in-situ SCMS analysis. For ambient MSI, the single-probe uses surface micro-extraction to continually conduct MS analysis of the sample, and this technique allows the creation of MS images with high spatial resolution (8.5 µm) from biological samples such as mouse brain and kidney sections. Ambient MSI has the advantage that little to no sample preparation is needed before the analysis, which reduces the amount of potential artifacts present in data acquisition and allows a more representative analysis of the sample to be acquired. For in-situ SCMS, the single-probe tip can be directly inserted into live eukaryotic cells such as HeLa cells, due to the small sampling tip size (< 10 µm), and this technique is capable of detecting a wide range of metabolites inside individual cells at near real-time. SCMS enables a greater sensitivity and accuracy of chemical information to be acquired at the single cell level, which could improve our understanding of biological processes at a more fundamental level than previously possible. The single-probe device can be potentially coupled with a variety of mass spectrometers for broad ranges of MSI and SCMS studies.
Mass spectrometry imaging (MSI) is a relatively new molecular imaging technique to provide the spatial distribution of the compounds of interest on surfaces. During the MSI analysis, mass spectrometry (MS) measurements are recorded across the surface on an individual pixel basis to create a 2D image of the species of interest 1. MSI techniques have the ability to provide a spatially resolved feature distribution for a large range of metabolites, allowing a much greater amount of information to be obtained from a sample than from using traditional molecular imaging techniques, and they have the potential to greatly improve the analysis of biological samples for biological and pharmacology studies 2. MSI can be broadly separated into non-ambient and ambient approaches. The non-ambient MSI analysis techniques, such as matrix assisted laser desorption ionization (MALDI) MS 3 and time of flight secondary ion MS (ToF SIMS) 4, are capable of high spatial resolution (around 5 µm and 100 nm, respectively) and high sensitivity. However, these methods require extensive sample preparation, such as the application of matrix molecules to the sample surface, and a vacuum sampling environment, which could introduce artifacts to the data obtained. Ambient techniques such as desorption electrospray ionization (DESI) MS 5, laser ablation electrospray ionization (LAESI) MS 6, and nano-DESI MS 7 are capable of MSI of samples with little to no prior preparation under the ambient environment, which is able to produce MS images that potentially reflect the sample in its most native state. However, most of these techniques generally lack the high spatial resolution and detection sensitivity compared with the non-ambient techniques, with experiments typically conducted at around 150 µm per pixel 8.
Single cell analysis (SCA) is a growing field that has the ability to characterize the chemical composition of biological samples at the cellular level. SCA enables the analysis of biological systems at a more fundamental level than traditional cell analysis techniques, which produce an averaged result of a population of cells, potentially providing insights that are previously intractable 9. MS techniques have recently been applied to SCA (termed single cell mass spectrometry or SCMS) using non-ambient techniques such as MALDI MS 10 and ToF SIMS 11 in which cells are pretreated before analysis, and with ambient techniques such as LAESI MS 12 and direct extraction methods, such as live single-cell video-MS 13, 14, to analyze a wide variety of cell types such as egg, plant, and cancer. Ambient techniques have the advantage of being applied to live cells, which again minimizes the artifacts, leading to a better representation of the metabolites in the live cells. The direct extraction based methods described above, however, perform the sample extraction and analysis process at two different steps, which result in a time gap during the analysis that could potentially alter the metabolites present within the sample.
The single-probe, a miniaturized multifunctional device that is capable of conducting high spatial resolution ambient MSI on biological tissue sections 15 and near real-time in-situ SCMS on live single cells 16. The single-probe has an integrated construction that is made up of a pulled dual-bore quartz capillary coupled with a solvent providing inlet and a nano-ESI emitter made from fused silica capillaries, enabling solvent delivery and analyte extraction to be performed from a single device. In the ambient MSI mode, the single-probe is placed over the sample tissue and surface micro-extraction occurs, allowing a rastered MS image to be made at high spatial resolution. Particularly, the tapered tip of the single-probe is small enough to be inserted into live eukaryotic cells for in-situ SCMS analysis, where the metabolite detection takes less than two seconds between probe insertion and MS detection, allowing chemical information to be taken in near real-time. Here are the protocols to fabricate the single-probe device and to conduct both the ambient MSI and SCMS modes using the single-probe MS techniques.
Animal use and welfare should adhere to the NIH Guide for the Care and Use of Laboratory Animals following protocols reviewed and approved by the Institutional Animal Care and Use Committee (IACUC). Mouse tissue samples were provided by collaborator Dr. Chuanbin Mao.
1. Mouse Tissue Section Preparation
2. Cell Culture
Note: Cell culture was performed in biological safety cabinet (Biosafety Level II) under sterile conditions. HeLa cell line was used as a model system, and cells were cultured in complete culture medium with the following conventional protocols:
3. Single-probe Fabrication
4. Build the Integrated Single-probe MS Setup
5. Ambient MSI
6. In-situ Live SCMS
The single-probe was successfully used for the ambient MSI analysis of sectioned mouse kidney tissue 15. The device uses the mechanism of surface liquid micro-extraction (Figure 1a), which provides highly efficient analyte extraction from a small area, leading to abundant ion signals intensities in the MSI results. For example, the signal intensities of more than 107 have been achieved for some abundant metabolites (Figure 2a). A large number of metabolites were detected in this manner, including a number of sphingomyelin (SM) and phosphatidylcholine (PC) species such as [SM (34:1) + Na]+ (725.5575 m/z), [PC (32:0) + H]+ (734.5700 m/z), [PC (34:1) + Na]+ (782.5696 m/z), and [PC (38:5 + Na)]+ (814.5726 m/z). These compounds were identified with high mass resolution and mass accuracy when coupled to a high resolution mass spectrometer. For example, the identification was achieved with less than 4 ppm m/z mass accuracy (i.e., the difference between the observed and theoretical values) for each metabolite (Figure 2b) in results presented here. In addition, tandem MS analyses (i.e., MS/MS) were also conducted for more confident identification of species of interest.15
Due to the capability of performing efficient liquid micro-extraction on a small area, the single-probe device can be used to perform high spatial resolution MSI experiments under ambient conditions15. For example, detailed MS images of mouse kidney sections have been obtained illustrating the spatial distribution of selected metabolites (Figure 2c). The spatial resolution of the MS image was determined to be 8.5 µm, following the widely used metric of having the transition point of a sharp feature determined within a 20-80% intensity change of the MS signal. 18 In the case of phospholipid [PC (38:5 + Na)]+ on the mouse kidney section, the feature transition between the inner medulla and the outer medulla takes place across one scan cycle in the chronogram, showing an intensity change greater than 20-80% range. Based on the sample moving speed (10.0 µm/sec) and MS data acquisition rate (0.85 sec/spectrum), the sample moving distance in one MS scan cycle (8.5 µm), i.e., the MSI spatial resolution, can be calculated (Figure 2d). This spatial resolution is amongst the highest yet achieved for ambient MSI techniques conducted on biological samples.
For SCMS the single-probe was able to achieve the analysis of individual live HeLa cells 16. The tip size of the single-probe is typically less than 10 µm (Figure 3a), which is small enough to be directly inserted into many types of eukaryotic cells, of which the diameter is ~10 µm, for extraction and MS analysis. The insertion process of the single-probe tip into a cell can be visually monitored using a digital stereo microscope (Figure 3b), and the cell membrane penetration can be confirmed through the rapid and significant change of mass spectra from PBS (or fresh cell culture medium) to intracellular compounds (Figures 3c and 3d). The experiments can be conducted in both positive and negative ion modes to detect broader types of molecular species. For example, 18 different lipid species were identified in the positive mode, including sphingomyelins (SM) and phosphatidylcholines (PC), whereas adenosine phosphates (AMP, ADP, and ATP) were detected in the negative ion mode (Figures 3c and d). The time delay between the single-probe insertion into a cell and the signal detection was typically less than two seconds, allowing a near real-time detection of cellular metabolites. SCMS was also applied to experiments where cells were treated with anticancer drugs (e.g., OSW-1, paclitaxel, and doxorubicin) 19]. The corresponding drugs can be detected within HeLa cells after 4-hour treatment at a series of concentrations (i.e., 10 nM, 100 nM, 1 µM, and 10 µM) in DMSO (dimethyl sulfoxide), using the untreated cells (add DMSO only) as the controls. The MS signals of drugs were not present within the extracellular PBS or the control (Figure 3e), but were detected within the single cells using the single-probe MS technique (only 100 nM treatment results are shown in Figure 3f). Because cells were rinsed with PBS (or fresh cell culture medium) to remove extracellular compounds and contaminations, the detection of endogenous metabolites (e.g., cell lipids and adenosine phosphates) and exogenous compounds (e.g., anticancer drugs) indicates that the Single-probe MS technique can be used to analyze intracellular compounds.
Figure 1. Fabrication and setup of the single-probe for ambient MSI and SCMS analysis. a) Fabrication procedures of the single-probe. b) Photograph of a fabricated single-probe attached to a glass slide. c) Photograph of the single-probe setup attached to a mass spectrometer. d) Diagram of the single-probe setup coupled with a mass spectrometer. During an experiment, the sampling solvent is continuously provided from the syringe, the ionization voltage is applied to the conductive union from the mass spectrometer, two digital microscopes are used to monitor sample placement, the motorized XYZ stage system is used to control sample motion, and a mass spectrometer is used for analysis. e) Photograph of the customized digital stereoscope system. f) Photograph showing the digital stereoscope attached to the ion source interface flange through an optical board. Please click here to view a larger version of this figure.
Figure 2. Results from an ambient MSI study of a mouse kidney section with high spatial and mass resolution. a) A representative mass spectrum from the single-probe MSI. The maximum intensity of detected metabolites can reach 3.39 x 107 (arbitrary units). b) A selection of the detected metabolites presented with their mass accuracy. c) MS images of [PC(32:0) + H]+ and [PC(34:1) + Na]+ taken from a mouse kidney section at 8.5 µm spatial resolution. PC: phosphatidylcholine. Scale bar: 2 mm; 0.20 mm (inset). d) Determination of spatial resolution of the MS image for [PC(38:5) + Na]+ (adapted with permission from reference 15). Please click here to view a larger version of this figure.
Figure 3. Results from an ambient SCMS analysis of drug treated HeLa cells with high mass resolution. a) Zoomed-in photograph of the single-probe tip showing a typical size of < 10 µm in diameter. b) Photograph taken at the point of single-probe insertion into a HeLa cell. Scale bar: 50 µm. c) A typical positive ion mode mass spectrum with the identifications of a number of PC (phosphatidylcholine) species. d) A representative list of metabolites detected from SCMS analysis of HeLa cells both in the positive and negative ion modes. e-f) Mass spectra for the control and treated (100 nM OSW-1) cells (adapted with permission from reference 16). Please click here to view a larger version of this figure.
Figure S1. Circuit diagram of the electronic device used to produce contact closure signal for mass spectrometer to collect data. Please click here to view or download this figure.
The single-probe is a multifunctional device that can be used for both MSI and SCMS experiments. The single-probe setup (including translation stage systems, microscopes, ion source interface flange, etc.) is designed as an add-on component that can be flexibly adapted to the existing mass spectrometer. A rapid exchange between the single-probe setup and the conventional ESI ion source can be accomplished within one minute. In principle, using the appropriate ion source interface flange, the single-probe setup can be adapted to the any other mass spectrometers. Additionally, the sampling solvent containing a variety of reagents can be used with the single-probe setup for reactive MSI and SCMS experiments, which greatly enhances the detection of broader ranges of biomolecules. In addition to animal tissues and cell lines, the single-probe is also capable of analyzing other biological systems such as plants. Therefore, with the same experimental setup and similar user training, a variety of studies can be performed using a single instrument and by the same users, allowing for efficient and versatile experiments to be accomplished with the minimum training time and instrumentation cost.
The key component of the single-probe MS technique is the probe itself. The quality of the single-probe has a significant influence on its performance, which largely determines the quality of both MSI and SCMS experiments. When fabricating single-probes, make sure that the capillaries inside of the dual-bore tubing are securely glued to eliminate the chance of solvent leak during the experiments. It is critical to use a minimum amount of UV curable epoxy, such that the orifices and capillaries are not clogged during the probe fabrication.
The single-probe has been used to conduct high spatial and mass resolution ambient MSI on biological samples 15. The major advantage of ambient MSI over non-ambient methods is that sample preparation is kept at a minimum with no need for a vacuum sampling environment, which allows the sample to be analyzed in a near native state 8. One of the major hurdles for most other ambient MSI technique has been a lack of spatial resolution 1. Compared with the desorption based MSI techniques (such as DESI and LAESI), the small tip size of the single-probe allows a more robust and efficient surface liquid micro-extraction to be performed over a small area, leading to a high spatial resolution of 8.5 µm, which is amongst the highest ones achieved using ambient MSI techniques 15. In addition, adjusting the components of the sampling solvent provides extra flexibility to conduct the experiments. For example, sampling solvents containing reagents (e.g., dicationic compounds) have been used to perform reactive MSI experiments, allowing for a significant increase in the number of metabolites identified per experiment 20. The other advantage of the single-probe is the integrated design, which provides the ease of operation during the entire data acquisition process. Because the distance between the tip and tissue surface is very sensitive for ion signal intensity and stability, obtaining a flat tissue section and conducting surface flattening adjustment to minimize the distance variance is a key for high quality MSI experiments. It follows that the single-probe MSI techniques are not suitable to obtain high spatial MS images of uneven surfaces.
In addition to fabricating a high quality probe, carefully tuning the instrument is essential for a successful MSI experiment. Among all tuning steps, adjusting the height of the single-probe tip above the tissue section surface is the most critical one. When adjusting the probe height, pump the sampling solvent and turn on the ionization voltage, so that only the solvent background ion signals can be observed. Then monitor the change of the mass spectrum while carefully reducing the probe-surface distance by lifting the motorized Z-stage until strong and stable ion signals from tissue section can be observed; this probe height will be used for MSI data collection during the experiment. In addition, an optimized solvent flow rate is essential for MSI experiments. Adjust the flow rate with the optimized probe height. Ensure that there is no solvent spread on the tissue surface (i.e., flow rate is too high) or bubble formation inside the nano-ESI emitter (i.e., flow rate is too low).
The single-probe is a multifunctional device for bioanalysis. In addition to the MSI experiments, it is capable of conducting near real-time in-situ SCMS to elucidate detailed chemical information from live eukaryotic cells16, which is a major advantage compared with other vacuum based SCMS techniques (such as MALDI10 and SIMS21). The small size of the probe tip provides the ability to be inserted into a live eukaryotic cell and to extract and ionize the intracellular compounds for immediate MS analysis. Similarly, the sampling solvents containing reagents (e.g., dicationic compounds) can be used in the SCMS experiments, and a broader range of cellular constituents can be detected in a live single cell than ever before (ongoing research, data are not shown). Although the real-time analysis will provide the chemical profiles of live single cells, due to the cell penetration of membrane and extraction of cellular contents, the cell under investigation will be killed after the experiment, implying that the single-probe SCMS technique is still a destructive method. In addition, the probe tip and nano-ESI emitter in the single-probe can be easily clogged for inexperienced users. To reduce the chance of device clogging, ensure to avoid touching the nucleus when inserting the single-probe tip into a cell. If clogging occurs, the device can be regenerated by heating up the clogged probe tip or the nano-ESI emitter using a homebuilt heating coil16. Another limitation of the single-probe SCMS technique is that only the adhesive cells (i.e., cells are attached to surfaces) can be analyzed using current setup. However, by incorporating the cell manipulation system into the single-probe MS apparatus, broader types of cell can be studied in future.
Similar to the MSI experiment, obtaining a high quality probe and an optimized solvent flow rate is critical for SCMS studies. When tuning the solvent flow rate, the single-probe tip is placed above the sample (i.e., no contact with the cell or culture medium), and ensure that there is no solvent dripping from the probe tip or bubble formation inside the nano-ESI emitter.
The authors have nothing to disclose.
The authors would like to thank Dr. Laskin (the Pacific Northwest National Laboratory) for sharing the motorized stage control software and MSI visualization program. We also thank Dr. Mao (the University of Oklahoma) for providing mouse organ samples and Mr. Chad E. Cunningham (the University of Oklahoma) for the assistance in machining and electronics work. This research was supported by grants from the Research Council of the University of Oklahoma Norman Campus, the American Society for Mass Spectrometry Research Award (sponsored by Waters Corporation), Oklahoma Center for the Advancement of Science and Technology (Grant HR 14-152), and National Institutes of Health (R01GM116116).
Single-probe fabrication | |||
Dual bore quartz tubing, 1.120’’×0.005”×12” | Friedrich & Dimmock, Inc, Millville, NJ | MBT-005-020-2Q | |
Micropipette laser puller | Sutter Instrument Co., Novato, CA | Model P-2000 | |
Fused silica capillary, ID: 40µm, OD: 110µm | Molex, Lisle, IL | TSP040105 | |
UV curing resin | Prime Dental, Prime-Dent, Chicago, IL, USA | Item No. 006.030 | |
LED UV lamp | Foshan Liang Ya Dental Equipment, Guangdong, China | LY-C240 | |
Epoxy resin | Devcon, Danvers, MA | Part No. 20945 | |
Inline MicroFilter | IDEX Health & Science LLC, Lake Forest, IL | M-520 | |
Microunion | IDEX Health & Science LLC, Lake Forest, IL | M-539 | |
Microscope slide (glass) | C & A Scientific – Premiere, Manassas, VA | 9105 | |
Syringe | Hamilton, Reno, NV | 1725LTN 250UL | |
Name | Company | Catalog Number | Comments |
Mass spectrometer | |||
LTQ Orbitrap Mass sprectrometer | Thermo Fisher Scientific, Inc., Waltham, MA | LTQ Orbitrap XL | |
Xcalibur 2.1 Software | Thermo Fisher Scientific, Inc., Waltham, MA | XCALIBUR21 | |
Fance Stage Control | Pacific Northwest National Laboratory, Richland, WA | ||
MSI QuickView | Pacific Northwest National Laboratory, Richland, WA | ||
Name | Company | Catalog Number | Comments |
Contact closure device | |||
USB-6009 Multifunction DAQ | National Instruments, Austin, TX | 779026-01 | |
DR-5V SDS Relay | Panasonic, Kadoma, Japan | DR-SDS-5 | |
Logic Gates 50 Ohm Line Driver | Texas Instruments, Dallas, TX | SN74128N | |
Name | Company | Catalog Number | Comments |
Single-probe setup | |||
Motorized linear stage and controller (3 sets) | Newport, Irvine, CA | Conex-MFACC | |
Miniature XYZ stage | Newport, Irvine, CA | MT-XYZ | |
Translation XY stage | ThorLab, Newton, NJ | PT1 and PT102 | |
Thermo LTQ XL ion source interface flange | New Objective, Woburn, MA | PV5500 | |
Digital stereo microscope, 250X-2000X | Shenzhen D&F Co., Shenzhen, China | Supereyes T004 | |
USB Digital Photography Microscope | DX.com, HongKong, China | S02 25~500X | |
Syringe pump | Chemyx Inc., Stafford, TX | Nexus 3000 | |
Solid Aluminum Optical Breadboard, 8" x 8" x 1/2" | Thorlabs, Newton, NJ | MB810 | |
Flexible clamp holder | Siskiyou, Grants Pass, OR | MXB-3h | |
Name | Company | Catalog Number | Comments |
Solvents | |||
Methol | Sigma-Aldrich, St. Louis, MO | 34860 Chromasolv | |
Water | Sigma-Aldrich, St. Louis, MO | W4502 | |
Acetonitrile | Sigma-Aldrich, St. Louis, MO | 34967 Chromasolv | |
Name | Company | Catalog Number | Comments |
Cell culture | |||
Dulbecco’s Modified Eagle’s Medium (DMEM) | Cellgro, Manasas, VA | 10-013-CV | |
10% heat-inactivated fetal bovine serum (FBS) | Gibco/Life Technologies, Long Island, NY | 10100-139 | |
Penicillin/Streptomycin | Cellgro, Manasas, VA | 30-002-CI | |
10 mM HEPES (pH 7.4) | Cellgro, Manasas, VA | 25-060-CI | |
Phosphate Buffered Saline (PBS) | Cellgro, Manasas, VA | 46-013-CM | |
TrypLE Express | Thermo Fisher Scientific, Waltham, MA | 12604-013 | |
12-well plates | Corning Inc., Corning, NY | Falcon 351143 | |
T25 flask | Corning Inc., Corning, NY | Falcon 3055 | |
Micro Cover Glasses, Round, No. 1 | VWR International, Radnor, PA | 48380-046 | |
DMSO (Dimethyl Sulfoxide) | VWR International, Radnor, PA | BDH1115-1LP | |
Name | Company | Catalog Number | Comments |
Tissue imaging | |||
Cyro-Cut Microtome | American Optical Coporation | ||
Tissue-Tek, Optimum cutting temperature (OCT) | Sakura Finetek Inc., Torrance, CA | 4583 | |
Microscope slide (polycarbonate ) | Science Supply Solutions, Elk Grove Village, IL | P11011P |