Summary

Feeder-fri Udledning af melanocytter fra menneskelige pluripotente stamceller

Published: March 03, 2016
doi:

Summary

Dette arbejde beskriver en in vitro differentiering protokol til at producere pigmenterede, modne melanocytter fra humane pluripotente stamceller via en neural crest og melanoblast mellemtrin ved hjælp af en feeder-fri, 25 dage protokol.

Abstract

Human pluripotent stem cells (hPSCs) represent a platform to study human development in vitro under both normal and disease conditions. Researchers can direct the differentiation of hPSCs into the cell type of interest by manipulating the culture conditions to recapitulate signals seen during development. One such cell type is the melanocyte, a pigment-producing cell of neural crest (NC) origin responsible for protecting the skin against UV irradiation. This protocol presents an extension of a currently available in vitro Neural Crest differentiation protocol from hPSCs to further differentiate NC into fully pigmented melanocytes. Melanocyte precursors can be enriched from the Neural Crest protocol via a timed exposure to activators of WNT, BMP, and EDN3 signaling under dual-SMAD-inhibition conditions. The resultant melanocyte precursors are then purified and matured into fully pigmented melanocytes by culture in a selective medium. The resultant melanocytes are fully pigmented and stain appropriately for proteins characteristic of mature melanocytes.

Introduction

Humane pluripotente stamceller (hPSCs) skabe en platform til at efterligne normal differentiering i en skalerbar mode for sygdom modellering, narkotika screening, og celle udskiftning behandlingsformer 1-6. Af særlig interesse, hPSCs åbner muligheder for at studere vanskeligt at isolere eller sjældne / forbigående celletyper hvor patientprøver er knappe. Endvidere inducerede pluripotente stamceller (iPSCs) gøre det muligt for forskerne at studere udviklingen og sygdom modellering i en patient specifik måde at optrævle unikke mekanismer 1,2,7-11. Den tidligere offentliggjort protokol til differentiering af melanocytter fra hPSCs kræver op til 6 ugers opdelinger og involverer dyrkning af celler med konditioneret medium fra L-Wnt3a celler 12. Protokollen først præsenteret af Mica et al. Og beskrevet her producerer pigmenterede celler i tre uger, og fjerner den uklarhed og uoverensstemmelser i forbindelse med konditioneret medium.

melanocytter are afledt af crista neuralis, en vandrende population af celler unikke for hvirveldyr. Den neurale crest er defineret under gastrulation og repræsenterer en population af celler på kanten af ​​det neurale plade, der grænser mellem neurale og ikke-neurale ektoderm. Under neurulation, nervevævet udvikler sig fra et neuralt plade til dannelse af neurale folder, der løber sammen i den dorsale midtlinje resulterer i neuralrøret 13,14.

Crista neuralis celler forlader toppladen af ​​det neurale rør, overfor rygstrengen, og undergår en epitelial til mesenkymale overgang før strømme væk for at give anledning til en forskelligartet population af differentierede celler. Skæbner de kamceller er defineret delvist af den anatomiske placering af tagpladen langs legemet akse af embryonet. Neuralkam cellederivater omfatter slægter karakteristiske for både mesoderm (glatte muskelceller, osteoblaster, adipocytter, chondrocytter) og ektoderm celler (melanocytter, Schwann calen, neuroner) 14. Neurale crest stamceller opregulerer transskriptionsfaktoren SOX10 og kan isoleres ved fluorescensaktiveret cellesortering med antistoffer til p75 og HNK1.

De neurale kamceller skæbnesvangre at blive melanocytter passere gennem en melanoblast scene og opregulere KIT og MITF (mikroftalmia-associeret transkriptionsfaktor) 6,21 MITF er en master regulator af melanocyt udvikling og er en transkriptionsfaktor ansvarlig for kontrollen meget af melanocyt udvikling 22- 24. Humane melanoblasts migrere til det basale lag af epidermis, hvor de bor enten i håret bule eller omgivet af keratinocytter i epidermis (dannende pigmentering enheder) til at tjene som forløbere for de modne, pigmenterede melanocytter. Differentieringen og modning af melanoblasts i pigmenterede melanocytter sker samtidig med kolonisering af hår pære og udtryk for melanin produktionen vejen (TYRP1, TYR, OCA2 ogPmel) 25,26.

Isolering humane melanocytter og melanoblasts fra patienter er dyrt, vanskeligt og begrænsende mængde. Denne protokol giver forskerne til at differentiere hPSCs (induceret eller embryonale) i melanocytter eller melanocyt forstadier i et veldefineret, hurtig, reproducerbar, skalerbar og billig metode uden celle sortering. Protokollen blev brugt tidligere til at identificere sygdomsspecifikke defekter når differentiere iPSCs fra patienter med pigmentering lidelser.

Protocol

BEMÆRK: melanocyt proceduren skitseret her blev først påvist af Mica et al. 1. Forberedelse af Culture Medium, Coated Tallerkener og vedligeholdelse af hPSCs Medium Forberedelse Bemærk: Opbevar alle ved 4 ° C i mørke i op til 2 uger. Filter alle medium for sterilisation. Forbered DMEM / 10% FBS. Bland 885 ml DMEM, 100 ml FBS, 10 ml Pen / Strep og 5 ml L-glutamin. Filter til sterilisering. Forbered hESC-medium. Bland 800 ml DMEM / F12, 200 ml KSR, 5 …

Representative Results

Denne protokol giver en fremgangsmåde til afledning fuldt pigmenterede, modne melanocytter fra hPSCs i en in vitro feeder-fri, omkostningseffektiv, og reproducerbar måde. I modsætning til den tidligere fastsatte Fang et al. Protokol for hPSC-afledte melanocytter, er den skitserede protokol ikke kræver konditioneret medium og reducerer tidsforbrug. Fang et al. Protokol anvendt konditioneret medium fra en Wnt3a-producerende murin cellelinie og tog op til 6 ug…

Discussion

For en vellykket differentiering af melanocytter fra hPSCs bør tages hensyn til følgende forslag. Først og fremmest er det vigtigt at arbejde under sterile dyrkningsbetingelser på alle tidspunkter. Desuden er det vigtigt at starte med pluripotent, fuldt udifferentierede hPSCs; hvis startpopulationen indeholder differentierede celler udbyttet vil uvægerligt falde som forureningerne ikke kan rette sig mod melanocytter og kan endda yderligere forstyrre korrekt differentierende celler.

For …

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af et stipendium for melanom forskere fra Joanna M. Nicolay Foundation og National Institutes of Health i henhold Ruth L. Kirschstein National Research Service Award F31. Dette arbejde blev yderligere understøttet gennem tilskud fra NYSTEM og Tri-institutionelle stamcelle-initiativet (Starr Foundation).

Materials

Accutase Innovative Cell Technologies AT104
apo human transferrin Sigma T1147
Ascorbic Acid (L-AA) Sigma A4034 100 mM
B27 (B27 Supplement) Invitrogen 17504044
β-Mercaptoethanol Gibco-Life Technologies 21985-023 10 mg/ml
BMP4 R&D Systems 314-bp
CHIR99021 Tocris-R&D Systems 4423 6 mM
Cholera toxin Sigma C8052 50 mg/ml
cAMP (cyclicAMP) Sigma D0627 100 mM
Dexamethasone Sigma D2915-100MG 50 μM
DMEM – Dulbecco's Modified Eagle Medium Gibco-Life Technologies 11985-092
DMEM/F12 – Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 Gibco-Life Technologies 1133–032
DMEM/F12 powder Invitrogen 12500-096
EDN3 (Endothelin-3, human) American Peptide Company 88-5-10B 100 μM
Fibronectin BD Biosciences 356008 200 μg/ml
gelatin (PBS without Mg/Ca) in house 0.1% in PBS
Glucose Sigma G7021
Human insulin Sigma I2643
ITS+ Universal Culture Supplement Premix  BD Biosciences 354352
KSR (Knockout Serum Replacement) Gibco-Life Technologies 10828-028
Knockout DMEM Gibco-Life Technologies 10829-018
L-Glutamine Gibco-Life Technologies 25030-081
LDN193189 Stemgent 04-0074 100 mM
Low glucose DMEM Invitrogen 11885-084
Matrigel matrix BD Biosciences 354234 Dissolve 1:20 in DMEM/F12
MCDB201 Medium Sigma M6770
MEM minimum essential amino acids solution Gibco-Life Technologies 11140-080
Mouse embryonic fibroblasts (7 million cells/vial) GlobalStem GSC-8105M
Mouse Laminin-I R&D Systems 3400-010-01 1 mg/ml
Neurobasal medium Invitrogen 21103049
Penicilin/Streptomycin Gibco-Life Technologies 15140-122 10,000 U/ml
Poly-L Omithin hydrobromide Sigma P3655 15 mg/ml 
Progesterone Sigma P8783 0.032g in 100ml 100% ethanol
Putrescine dihydrochloride Sigma P5780
FGF2 (Recombinant human FGF basic) R&D Systems 233-FB-001MG/CF 10 mg/ml
SB431542 Tocris-R&D Systems 1814 10 mM
Selenite Sigma S5261
Sodium Bicarbonate Sigma S5761
SCF (Stem Cell Factor, recombinant Human)  Peprotech Inc. 300-07 50 μg/ml
TYRP1 (G-17) Antibody Santa Cruz 10443 1:200
TYRP2 Antibody Abcam 74073 1:200
Trypsin-EDTA (0.05%) Gibco-Life Technologies 25300-054
Y-27632 dihydrochloride Tocris-R&D Systems 1254 10 mM

Referenzen

  1. Ebert, A. D., et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 457, 277-280 (2009).
  2. Lee, G., et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 461, 402-406 (2009).
  3. Lee, G., et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat biotechnol. 30, 1244-1248 (2012).
  4. Lee, G., Studer, L. Induced pluripotent stem cell technology for the study of human disease. Nat methods. 7, 25-27 (2010).
  5. Zimmer, B., et al. Evaluation of developmental toxicants and signaling pathways in a functional test based on the migration of human neural crest cells. Environ health persp. 120, 1116-1122 (2012).
  6. Mica, Y., Lee, G., Chambers, S. M., Tomishima, M. J., Studer, L. Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell rep. 3, 1140-1152 (2013).
  7. Mariani, J., et al. FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell. 162, 375-390 (2015).
  8. Doulatov, S., et al. Modeling Diamond Blackfan Anemia in Vivo Using Human Induced Pluripotent Stem Cells. Blood. 124, (2014).
  9. Cherry, A. B. C., Daley, G. Q. Reprogrammed Cells for Disease Modeling and Regenerative Medicine. Annu Rev Med. 64, 277-290 (2013).
  10. Inoue, H., Nagata, N., Kurokawa, H., Yamanaka, S. iPS cells: a game changer for future medicine. Embo J. 33, 409-417 (2014).
  11. Kim, C., et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 494, 105-110 (2013).
  12. Fang, D., et al. Defining the conditions for the generation of melanocytes from human embryonic stem cells. Stem cells. 24, 1668-1677 (2006).
  13. Huang, X., Saint-Jeannet, J. P. Induction of the neural crest and the opportunities of life on the edge. Dev biol. 275, 1-11 (2004).
  14. White, R. M., Zon, L. I. Melanocytes in development, regeneration, and cancer. Cell stem cell. 3, 242-252 (2008).
  15. Morrison, S. J., White, P. M., Zock, C., Anderson, D. J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell. 96, 737-749 (1999).
  16. Elworthy, S., Pinto, J. P., Pettifer, A., Cancela, M. L., Kelsh, R. N. Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent. Mech develop. 122, 659-669 (2005).
  17. Harris, M. L., Baxter, L. L., Loftus, S. K., Pavan, W. J. Sox proteins in melanocyte development and melanoma. Pigm cell melanoma r. 23, 496-513 (2010).
  18. Herbarth, B., et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. PNAS. 95, 5161-5165 (1998).
  19. Southard-Smith, E. M., Kos, L., Pavan, W. J. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat genetics. 18, 60-64 (1998).
  20. Dupin, E., Glavieux, C., Vaigot, P., Le Douarin, N. M. Endothelin 3 induces the reversion of melanocytes to glia through a neural crest-derived glial-melanocytic progenitor. PNAS. 97, 7882-7887 (2000).
  21. Lister, J. A., Robertson, C. P., Lepage, T., Johnson, S. L., Raible, D. W. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development. 126, 3757-3767 (1999).
  22. Hou, L., Panthier, J. J., Arnheiter, H. Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF. Development. 127, 5379-5389 (2000).
  23. Levy, C., Khaled, M., Fisher, D. E. MITF: master regulator of melanocyte development and melanoma oncogene. Trends mol med. 12, 406-414 (2006).
  24. Phung, B., Sun, J., Schepsky, A., Steingrimsson, E., Ronnstrand, L. C-KIT signaling depends on microphthalmia-associated transcription factor for effects on cell proliferation. PloS one. 6, e24064 (2011).
  25. Grichnik, J. M., et al. KIT expression reveals a population of precursor melanocytes in human skin. J invest dermatol. 106, 967-971 (1996).
  26. Li, L., et al. Human dermal stem cells differentiate into functional epidermal melanocytes. J cell sci. 123, 853-860 (2010).
  27. Nishimura, E. K., et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 416, 854-860 (2002).
  28. Zur Nieden, N. I. . Embryonic stem cell therapy for osteo-degenerative diseases : methods and protocols. , (2011).
  29. Lee, J. H., et al. high-content screening for novel pigmentation regulators using a keratinocyte/melanocyte co-culture system. Exp dermatol. 23, 125-129 (2014).
check_url/de/53806?article_type=t

Play Video

Diesen Artikel zitieren
Callahan, S. J., Mica, Y., Studer, L. Feeder-free Derivation of Melanocytes from Human Pluripotent Stem Cells. J. Vis. Exp. (109), e53806, doi:10.3791/53806 (2016).

View Video