Summary

Procédure d'enregistrement polygraphique pour la mesure du sommeil chez la souris

Published: January 25, 2016
doi:

Summary

The recording of electroencephalogram (EEG) and electromyogram (EMG) in freely behaving mice is a critical step to correlate behavior and physiology with sleep and wakefulness. The experimental protocol described herein provides a cable-based system for acquiring EEG and EMG recordings in mice.

Abstract

Recording of the epidural electroencephalogram (EEG) and electromyogram (EMG) in small animals, like mice and rats, has been pivotal to study the homeodynamics and circuitry of sleep-wake regulation. In many laboratories, a cable-based sleep recording system is used to monitor the EEG and EMG in freely behaving mice in combination with computer software for automatic scoring of the vigilance states on the basis of power spectrum analysis of EEG data. A description of this system is detailed herein. Steel screws are implanted over the frontal cortical area and the parietal area of 1 hemisphere for monitoring EEG signals. In addition, EMG activity is monitored by the bilateral placement of wires in both neck muscles. Non-rapid eye movement (Non-REM; NREM) sleep is characterized by large, slow brain waves with delta activity below 4 Hz in the EEG, whereas a shift from low-frequency delta activity to a rapid low-voltage EEG in the theta range between 6 and 10 Hz can be observed at the transition from NREM to REM sleep. By contrast, wakefulness is identified by low- to moderate-voltage brain waves in the EEG trace and significant EMG activity.

Introduction

Les progrès techniques ont souvent précipité sauts quantiques dans la compréhension des processus neurobiologiques. Par exemple, la découverte de Hans Berger en 1929 que les potentiels électriques enregistrés à partir du cuir chevelu humain ont pris la forme d'ondes sinusoïdales, dont la fréquence est directement liée au niveau de l'éveil du sujet, a conduit à des progrès rapides dans la compréhension de veille-sommeil la réglementation, dans les deux animaux et les humains. 1 A ce jour l'electroencephlogram (EEG), en collaboration avec l'électromyogramme (EMG), ie., l'activité électrique produite par les muscles squelettiques, représente les données «colonne vertébrale» de presque tous expérimentale et clinique évaluation visant à établir une corrélation entre comportement et la physiologie de l'activité des neurones corticaux en se comportant animaux, y compris les humains. Dans la plupart des laboratoires de recherche du sommeil de base, ces enregistrements EEG sont effectuées en utilisant un système à base de câble (Figure 1) dans laquelle acquis dATA est soumis hors ligne le modèle et le spectre d'analyse [par ex., l'application de la transformée de Fourier rapide (FFT)] pour déterminer l'état de l'objet de la vigilance en cours d'enregistrement. 2, 3 Sommeil se compose de mouvements oculaires rapides (REM) et non-REM (NREM) sommeil. Le sommeil paradoxal est caractérisé par une basse tension rapide EEG, le mouvement des yeux aléatoire, et atonie musculaire, un état dans lequel les muscles sont effectivement paralysés. Sommeil paradoxal est également connu comme le sommeil paradoxal, car l'activité cérébrale ressemble à celle de l'état de veille, tandis que le corps est en grande partie déconnecté du cerveau et semble être en sommeil profond. En revanche, les neurones sont stimulés au cours du sommeil lent, mais il n'y a aucun mouvement de l'oeil. Le sommeil de NREM humain peut être divisé en 4 étapes, de sorte que l'étape 4 est appelé sommeil profond ou le sommeil lent et qui est identifié par les grandes ondes cérébrales lentes, avec une activité delta entre 0,5 à 4 Hz dans l'EEG. D'autre part, une subdivision entre les phases de sommeil lent dans de plus petits animaux, comme des rats unend souris, n'a pas été établie, principalement parce qu'ils ne disposent pas de longues périodes consolidés de sommeil comme on le voit chez les humains.

Au fil des ans, et sur la base de l'EEG interprétation, plusieurs modèles de régulation veille-sommeil, à la fois sur la base de circuits et humorale, ont été proposées. La base neuronale et cellulaire du besoin de sommeil ou, alternativement, «lecteur de sommeil," toujours pas résolue, mais a été conceptualisée comme une pression homéostatique qui construit pendant la période de la veille et est dissipée par le sommeil. Une théorie est que les facteurs endogènes somnogenic accumulent pendant l'éveil et que leur accumulation progressive est le fondement de sommeil pression homéostatique. Alors que la première hypothèse formelle que le sommeil est régulé par des facteurs humoraux a été crédité au travail de Rosenbaum publiée en 1892 4, il était Ishimori 5, 6 et Piéron 7 qui indépendamment, et il ya plus de 100 ans, a démontré l'existence de produits chimiques favorisant le sommeil. Les deux chercheurs ont proposé, et en effet prouvé que les substances hypnogènes ou «hypnotoxins» étaient présents dans le liquide céphalo-rachidien (LCR) de chiens privés de sommeil. 8 cours du siècle passé plusieurs substances hypnogènes putatifs supplémentaires impliquées dans le processus homéostatique du sommeil ont été identifiés (pour revue, voir réf. 9), y compris la prostaglandine (PG) D 2, 10 cytokines, 11 adénosine, 12 anandamide, 13 et le peptide urotensine II. 14

Les travaux expérimentaux par Economo 15, 16, Moruzzi et Magoun 17, et d'autres dans les résultats précoces et mi-20 e siècle produites qui a inspiré les théories sur circuit de sommeil et l'éveil et, dans une certaine mesure, éclipsé la théorie humorale alors en vigueur dormir. À ce jour, plusieurs «modèles de circuits» ont été proposées, chaque informés par des données de qualité et de quantité variable (pour revue, voir réf. 18). Un modèle, Par exemple, propose que le sommeil lent est généré par l'inhibition de l'adénosine-médiation de la libération d'acétylcholine des neurones cholinergiques dans le cerveau antérieur basal, une zone consisiting principalement du noyau de la branche horizontale de la bande diagonale de Broca et l'inominata substance. 19 Un autre modèle populaire de la réglementation de sommeil / éveil décrit un mécanisme de commutation bascule sur la base des interactions mutuellement inhibitrices entre les neurones somnifères dans la région préoptique ventrolatérale et les neurones de sillage induisant dans le tronc de l'hypothalamus et le cerveau. 18, 20, 21 En outre, pour la commutation dans et hors de sommeil paradoxal, une interaction réciproque inhibiteur similaire a été proposé pour les zones dans le tronc cérébral, qui est le gris ventrale périaqueducale, latéral pontique calotte, et le noyau sublaterodorsal. 22 Collectivement, ces modèles se sont avérés précieux heuristiques et cadres d'interprétation importantes offertes pour des études en recherche sur le sommeil; cependant, un yet meilleure compréhension des mécanismes et des circuits moléculaires régulant le cycle veille-sommeil, il faudra une connaissance plus complète de ses composants. Le système d'enregistrement polygraphique détaillé ci-dessous devrait aider à atteindre cet objectif.

Protocol

Déclaration éthique: procédures impliquant des sujets animaux ont été approuvés par la Commission institutionnelle Expérience animale de l'Université de Tsukuba. 1. Préparation des électrodes et des câbles pour EEG / EMG Recordings Préparer EEG / EMG électrode d'enregistrement selon le mode opératoire suivant. Remarque: L'électrode est jetable et peut être utilisée que pour une animal. Planifiez soigneusement la configuration de câblage pour to…

Representative Results

Figure 1B illustre des exemples de l'EEG souris dans les différents états de vigilance. Comme le montre le tableau 1, les époques sont classés comme si le sommeil lent EEG montre grandes ondes cérébrales, avec un rythme lent de delta inférieure à 4 Hz et l'EMG ne dispose que d'un signal faible ou nulle. Époques sont classés comme le sommeil paradoxal si l'EEG montre rapides ondes cérébrales basse tension dans la gamme thêta e…

Discussion

Ce protocole décrit un set-up pour les enregistrements EEG / EMG qui permet l'évaluation de sommeil et l'éveil sous faible bruit, conditions de coût-efficaces et à haut débit. En raison de la petite taille de l'ensemble de tête de l'électrode EEG / EMG, ce système peut être combiné avec d'autres implants pour des expériences intra-cérébrales, y compris optogénétique (optique de l'implantation de la fibre) ou, en conjonction avec simultanée canule implantation, microperfusion de m…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Larry D. Frye for editorial help with this manuscript. This work was supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research 24300129 (to M.L.), 25890005 (to Y.O.) and 26640025 (to Y.T.), the National Agriculture and Food Research Organization (to Y.U.), the World Premier International Research Center Initiative (WPI) from the Ministry of Education, Culture, Sports, Science, and Technology (to Y.O., Y.T., Y.U. and M.L.) and the Nestlé Nutrition Council, Japan (to M.L.).

Materials

4-pin header Hirose A3B-4PA-2DSA(71)
Ampicillin Meiji Seika N/A
Analog-to-digital converter Contec AD16-16U(PCIEV)
Caffeine Sigma C0750
Carbide cutter Minitor B1055
Crimp housing Hirose DF11-4DS-2C
Crimp socket Hirose DF11-30SC
Dental cement (Toughron Rebase) Miki Chemical Product N/A
Epoxy adhesive Konishi #16351
FFC/FPC connector Honda Tsushin Kogyo FFC-10BMEP1(B)
Flat cable Hitachi Cable 20528-ST LF
Instant glue (Aron Alpha A) Toagosei N/A
Meloxicam Boehringer Ingelheim N/A
Pentobarbital Kyoritsu Seiyaku N/A
Signal amplifier Biotex N/A
Sleep recording chamber APL N/A
SleepSign software Kissei Comtec N/A for EEG/EMG recording/analysis
Slip ring Biotex N/A
Stainless steel screw Yamazaki N/A φ1.0×2.0
Stainless steel wire Cooner Wire AS633

Referenzen

  1. Berger, H. Über das Elektrenkephalogramm des Menschen. Arch. Psych. 87 (1), 527-570 (1929).
  2. Tobler, I., Deboer, T., & Fischer, M. Sleep and sleep regulation in normal and prion protein-deficient mice. J. Neurosci. 17 (5), 1869-1879, (1997).
  3. Kohtoh, S. et al. Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram. Sleep Biol. Rhythm. 6 (3), 163-171 (2008).
  4. Rosenbaum, E. Warum müssen wir schlafen? : eine neue Theorie des Schlafes. August Hirschwald (1892).
  5. Kubota, K. Kuniomi Ishimori and the first discovery of sleep-inducing substances in the brain. Neurosci. Res. 6 (6), 497-518 (1989).
  6. Ishimori, K. True cause of sleep: a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Tokyo Igakkai Zasshi. 23, 429-457 (1909).
  7. Legendre, R., & Pieron, H. Recherches sur le besoin de sommeil consécutif à une veille prolongée. Z. Allegem. Physiol. 14, 235-262 (1913).
  8. Inoué, S., Honda, K., & Komoda, Y. Sleep as neuronal detoxification and restitution. Behav. Brain. Res. 69 (1-2), 91-96 (1995).
  9. Urade, Y., & Hayaishi, O. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev. 15 (6), 411-418 (2011).
  10. Ueno, R., Ishikawa, Y., Nakayama, T., & Hayaishi, O. Prostaglandin D2 induces sleep when microinjected into the preoptic area of conscious rats. Biochem. Biophys. Res. Commun. 109 (2), 576-582 (1982).
  11. Krueger, J. M., Walter, J., Dinarello, C. A., Wolff, S. M., & Chedid, L. Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am. J. Physiol. 246 (6 Pt 2), R994-999 (1984).
  12. Porkka-Heiskanen, T. et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 276 (5316), 1265-1268 (1997).
  13. Garcia-Garcia, F., Acosta-Pena, E., Venebra-Munoz, A., & Murillo-Rodriguez, E. Sleep-inducing factors. CNS Neurol. Disord. Drug. Targets. 8 (4), 235-244 (2009).
  14. Huitron-Resendiz, S. et al. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons. J. Neurosci. 25 (23), 5465-5474 (2005).
  15. Wilkins, R. H., & Brody, I. A. Encephalitis lethargica. Arch. Neurol. 18 (3), 324-328 (1968).
  16. von Economo, C. Die encephalitis lethargica. Wien. Klin. Wochenschr. 30, 581-585 (1917).
  17. Moruzzi, G., & Magoun, H. W. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1 (4), 455-473 (1949).
  18. Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J., & Scammell, T. E. Sleep state switching. Neuron. 68 (6), 1023-1042 (2010).
  19. Jones, B. E. in Progress in Brain Research,. Volume 145, eds. Kresimir Krnjevic Laurent Descarries & Steriade Mircea. Elsevier, 157-169 (2004).
  20. Saper, C. B., Scammell, T. E., & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 437 (7063), 1257-1263 (2005).
  21. Fort, P., Bassetti, C. L., & Luppi, P. H. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur. J. Neurosci. 29 (9), 1741-1753 (2009).
  22. Lu, J., Sherman, D., Devor, M., & Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature. 441 (7093), 589-594 (2006).
  23. Paxinos, G., & Franklin, K. B. J. The mouse brain in stereotaxic coordinates. Academic (2001).
  24. Lazarus, M. et al. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J. Neurosci. 31 (27), 10067-10075 (2011).
  25. Huang, Z.-L. et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 8 (7), 858-859 (2005).
  26. Qu, W.-M., Huang, Z.-L., Xu, X.-H., Matsumoto, N., & Urade, Y. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J. Neurosci. 28 (34), 8462-8469 (2008).
  27. Huang, Z. L. et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl. Acad. Sci. USA. 98 (17), 9965-9970 (2001).
  28. Xu, Q. et al. A mouse model mimicking human first night effect for the evaluation of hypnotics. Pharmacol. Biochem. Behav. 116, 129-136 (2014).
  29. Cho, S. et al. Marine polyphenol phlorotannins promote non-rapid eye movement sleep in mice via the benzodiazepine site of the GABAA receptor. Psychopharmacol. 231 (14), 2825-2837 (2014).
  30. Liu, Y.-Y. et al. Piromelatine exerts antinociceptive effect via melatonin, opioid, and 5HT1A receptors and hypnotic effect via melatonin receptors in a mouse model of neuropathic pain. Psychopharmacol. 231 (20), 3973-3985 (2014).
  31. Qu, W.-M. et al. Lipocalin-type prostaglandin D synthase produces prostaglandin D2 involved in regulation of physiological sleep. Proc. Natl. Acad. Sci. USA. 103 (47), 17949-17954 (2006).
check_url/de/53678?article_type=t

Play Video

Diesen Artikel zitieren
Oishi, Y., Takata, Y., Taguchi, Y., Kohtoh, S., Urade, Y., Lazarus, M. Polygraphic Recording Procedure for Measuring Sleep in Mice. J. Vis. Exp. (107), e53678, doi:10.3791/53678 (2016).

View Video