We present a method to control the interfacial energy of a liquid metal in an electrolyte via electrochemical deposition (or removal) of a surface oxide layer. This simple method can control the capillary behavior of gallium-based liquid metals by tuning the interfacial energy rapidly, significantly, and reversibly using modest voltages.
Controlling grensvlakspanning is een effectieve methode voor het manipuleren van de vorm, positie en vloeistofstroom op sub-millimeter lengteschalen, waarbij grensvlakspanning is een dominante kracht. Verschillende werkwijzen bestaan voor de grensvlakspanning van waterige en organische vloeistoffen op deze schaal; Maar deze technieken nut voor vloeibare metalen beperkt vanwege hun grote grensvlakspanning.
Vloeibare metalen kunnen zacht, rekbaar, en de vorm-herconfigureerbare componenten in elektronische en elektromagnetische apparaten vormen. Hoewel het mogelijk is deze vloeistoffen via mechanische methoden (bijvoorbeeld pompen) te manipuleren, elektrische werkwijzen gemakkelijker te miniaturiseren, controle en implementeren. Echter, de meeste elektrische technieken hebben hun beperkingen: electrowetting-on-diëlektrische vereist grote (kV) potentieel voor bescheiden bediening, electrocapillarity kunnen beïnvloeden relatief kleine veranderingen in de grensvlakspanning en continue electrowetting beperkt tot pluggen van het vloeibare metaal in capillairen.
Hier presenteren we een werkwijze voor het bedienen van gallium en gallium gebaseerde vloeibare metaallegeringen via een elektrochemische reactie oppervlak. Beheersing van de elektrochemische potentiaal van het oppervlak van het vloeibare metaal in elektrolyt snel en wederzijds verandert de grensvlakspanning meer dan twee orden van grootte (̴500 mN / m tot bijna nul). Bovendien vereist deze werkwijze slechts een zeer geringe potentiaal (<1 V) aangebracht ten opzichte van een tegenelektrode. De resulterende verandering in spanning vooral door de elektrochemische afzetting van een oppervlak oxidelaag, die fungeert als een oppervlakteactieve stof; verwijderen van de oxide verhoogt de grensvlakspanning en vice versa. Deze techniek kan worden toegepast in een breed scala van elektrolyten en onafhankelijk is van het substraat waarop het rust.
This method provides a simple way to control the surface tension of liquid metals containing gallium. The method uses modest voltages (~1 V) applied directly to the liquid metal (relative to a counter electrode in the presence of electrolyte) to achieve enormous and reversible changes to the surface tension of the metal1.
Surface tension is a dominant force for liquids at small length scales and is important for a number of capillary phenomena including wetting, spreading, and surface-tension driven flow. Consequently, the ability to control surface tension is a sensible way to manipulate the shape, position, and flow of liquids at sub-mm length scales. The most common way to alter surface tension between two fluids is to use a surfactant, which is a molecule that spans the interface between the fluids. Surfactants lower surface tension, but in a way that is not easy to reverse since it is difficult to remove surfactants from the interface. Surface tension can also be altered using a variety of techniques, including temperature gradients2,3, light4, surface chemistry5–7,and voltage8. But most of these methods result in modest changes to surface tension, particularly for liquid metals, which have notably large surface tensions.
The ability to control the surface tension of liquid metal could enable new opportunities for creating shape reconfigurable structures with metallic properties for electronic, thermal, and optical applications9–14. The most common liquid metal is Hg, which is noted for its toxicity. The methods described here are relevant for liquid metals based on gallium. These metals have low viscosity, large surface tension, low volatility (low vapor pressure), and low toxicity15. Importantly, these metals form surface oxides composed of gallium oxide that are a few nm thick in air16. This oxide layer creates a physical skin that historically has been a nuisance for electrochemical and fluid dynamic applications17. The method here utilizes the oxide in new ways to control surface tension.
The most common way to manipulate liquid metals in electrolyte is to apply a potential to the metal relative to a counter electrode18. Oppositely charged ions from the electrolyte match the charges on the metal, causing the interfacial tension to drop. This phenomenon-termed electrocapillarity-has been known since the 1870s as described by Lippman19and has been utilized for alloys of gallium20. Typically, electrocapillarity achieves modest changes to surface tension, since undesirable electrochemical reactions limit the range of voltages applied to the metal. In contrast, the method described here utilizes the surface oxidation of the metal (or conversely, the reduction of the surface oxide) as a way to achieve enormous changes in surface tension above and beyond changes resulting from electrocapillarity. The leading explanation for this phenomenon is that the oxide is asymmetric; that is, the outer surface of the oxide terminates with hydroxyl groups (making a low interfacial tension interface with the aqueous electrolyte), and the interior surface of the oxide terminates with gallium atoms (making a low interfacial tension interface with the metal). In contrast, the removal of the oxide via electrochemical reduction results in a bare metal-electrolyte interface, which returns the metal back to a state of high surface tension. We characterize the interfacial tension of the metal by analyzing the shape of sessile droplets as a function of voltage while assuming that gravity and surface tension are the dominant forces that define the curvature of its surface.
The advantage of this technique relative to classic electrocapillarity is that it can reversibly tune the tension of low toxicity liquid metals over enormous ranges (from ~500 mN/m to near zero). This delta change in surface tension may be the largest ever reported in literature for any fluid and it can be accomplished in a tunable and reversible manner. These large changes in surface tension are useful for manipulating the capillary behavior of metals; for example, it can induce the metal to spread on a surface, withdraw the metal from microchannels, fill microchannels with metal, and overcome the Rayleigh instabilities to form liquid metal fibers1,21.
A drawback of this technique is that it requires electrolyte. It works best in acidic or basic conditions, because these electrolytes remove excess surface oxide that would otherwise contaminate the surface of the metal and mechanically restrict the movement of the metal. The simultaneous removal and deposition of the oxide layer complicates the analysis of the interfacial phenomena and it is our hope the methods described in this paper empowers additional analysis. Another disadvantage is that the electrochemical reactions at the surface of the metal must be matched by complimentary half-reactions at the counter electrode22,23. This can lead to hydrogen bubbles forming at the counter electrode.
Deze werkwijze regelt de oppervlaktespanning van gallium gebaseerde vloeibare metalen met behulp van kleine spanningen aan de afzetting en het verwijderen van een oppervlak oxide drijven. Hoewel de methode alleen werkt in elektrolytoplossingen, is het eenvoudig, en werkt in een groot aantal verschillende omstandigheden, maar er zijn subtiele vermeldenswaard. Aangezien elektrische potentiaal, zowel zure en basische oplossingen etsen weg het oxyde 27. De toepassing van een oxidatieve potentieel drijft de …
The authors have nothing to disclose.
The authors acknowledge support from Samsung, the NC State Chancellors Innovation Funds, NSF (CAREER CMMI-0954321 and Triangle MRSEC DMR-1121107), and Air Force Research Labs.
Eutectic Gallium Indium | Indium Corporation | ||
Sodium Hydroxide | Fisher Scientific | 2318-3 | |
Hydrochloric Acid | Fisher Scientific | A481-212 | |
Sodium Fluoride | Sigma-Aldrich | 201154 | |
Optical Adhesive | Norland | NOA81 | |
Polydimethylsiloxane (Sylgard-184) | Dow Corning | Silicone Elastomer Kit | |
Borosilicate Glass Capillaries | Friedrich and Dimmoch | B41972 | |
Ag/AgCl Reference Electrode | Microelectrodes Inc. | MI-401F | |
Voltage Source | Keithley | 3390 | |
Potentiostat | Gamry | Ref 600 | |
Laser Cutter | Universal Laser Systems | VLS 3.50 |