This protocol allows for the reliable generation and characterization of blood outgrowth endothelial cells (BOECs) from a small volume of adult peripheral blood. BOECs can be used as a surrogate for endothelial cells from patients with vascular disorders and as a substrate for the generation of induced pluripotent stem cells.
Historically, the limited availability of primary endothelial cells from patients with vascular disorders has hindered the study of the molecular mechanisms underlying endothelial dysfunction in these individuals. However, the recent identification of blood outgrowth endothelial cells (BOECs), generated from circulating endothelial progenitors in adult peripheral blood, may circumvent this limitation by offering an endothelial-like, primary cell surrogate for patient-derived endothelial cells. Beyond their value to understanding endothelial biology and disease modeling, BOECs have potential uses in endothelial cell transplantation therapies. They are also a suitable cellular substrate for the generation of induced pluripotent stem cells (iPSCs) via nuclear reprogramming, offering a number of advantages over other cell types. We describe a method for the reliable generation, culture and characterization of BOECs from adult peripheral blood for use in these and other applications. This approach (i) allows for the generation of patient-specific endothelial cells from a relatively small volume of adult peripheral blood and (ii) produces cells that are highly similar to primary endothelial cells in morphology, cell signaling and gene expression.
Hasta hace poco, se creía que la generación post-natal de nuevos vasos sanguíneos que se produzca exclusivamente a través de un proceso conocido como angiogénesis, definido como el surgimiento de nuevos vasos a partir de las células endoteliales de los vasos preexistentes. 1 Este proceso contrasta de la vasculogénesis, o la formación de novo de vasos sanguíneos a partir de progenitores endoteliales, que se cree que se producen exclusivamente durante la embriogénesis. 2 Sin embargo, estudios más recientes han identificado y aislado células progenitoras endoteliales circulantes (EPC) en la sangre periférica de adultos. Estas células poseen la capacidad de diferenciarse en células endoteliales maduras en cultivo y se cree que participar en la vasculogénesis postnatal. 3,4
Los protocolos para el aislamiento y expansión de estas EPCs típicamente involucran el cultivo de células mononucleares de sangre periférica (PBMNCs) en medios que contienen factores de crecimiento endoteliales, incluyendo vasculfactor de crecimiento endotelial ar (VEGF) y las culturas EPC factor de crecimiento fibroblástico-2 5-8. producen una variedad de diferentes tipos de células de manera espectacular. Culturas iniciales (<7 días) están dominados por un tipo celular de monocitos, conocida en la literatura como "primeros" EPC. A pesar de su nombre, estas células expresan el marcador CD14 de monocitos, son negativos para el marcador CD34 progenitor y expresan niveles sólo mínimas de la clásica marcadores endoteliales CD31 y VEGF receptor 2 (VEGFR2). 5 cultura Continuación da lugar a una población secundaria de las células, conocido como EPC finales de excrecencia o células endoteliales excrecencia de sangre (BOECs), que aparecen como colonias discretas de células similares a las endoteliales. A diferencia de los principios de EPCs monocíticas, BOECs, que también han sido llamados formadoras de colonias (células endoteliales ECFCs), células endoteliales o células endoteliales excrecencia late-excrecencia, exhiben la morfología de adoquines que es típico de monocapas de células endoteliales y son muy similares en marcador de superficie5 y la expresión génica 9 a madurar las células endoteliales.
La generación de células similares a las endoteliales de sangre periférica ofrece varias ventajas, en particular para el estudio de la disfunción de la célula endotelial asociada con trastornos vasculares tales como la hipertensión arterial pulmonar (HAP) 10 o von Willebrand enfermedad. 11 Antes de la disponibilidad de BOECs, endotelial células sólo se podrían derivar de órganos explantados en el momento de la muerte o el trasplante de órganos, o aislada de la vena umbilical en el nacimiento. Esta disponibilidad reducida representado una seria limitación para la comprensión de la biología de las células endoteliales de pacientes con trastornos cardiovasculares, así como las interacciones entre las células endoteliales y, o bien células de la sangre o células murales. Además, el aislamiento y el cultivo de una población pura de células endoteliales a partir de estas fuentes es técnicamente difícil y las células obtenidas por estos métodos exhiben solamente un limited capacidad proliferativa. Por lo tanto, BOECs ofrecen un sustituto valiosa para el aislamiento y cultivo de células endoteliales primarias derivadas del paciente.
Además de sus aplicaciones in vitro, BOECs también son potencialmente útiles en terapias de trasplante de células autólogas. Estas aplicaciones incluyen tanto el trasplante de células endoteliales para promover la neovascularización (véase 12 y referencias en él), así como la generación de células madre pluripotentes inducidas (CMPI). 13 iPSCs derivados de BOEC se pueden utilizar para el modelado de la enfermedad y ofrecen un potencial inmenso como el de partida material para las terapias con células autólogas. BOECs reprogramar más rápido y con una mayor eficiencia que los fibroblastos de la piel. Además, BOECs también permite la generación de células iPS que están libres de anomalías del cariotipo, que es una característica esencial de cualquier tecnología que será adecuado para aplicaciones de traslación. La capacidad de generar iPSCs de una muestra de sangre de un pacientelso elimina la necesidad de una biopsia de piel y la generación de fibroblastos de la piel, facilitando de este modo la generación de células de pacientes con trastornos de la cicatrización de heridas, o los muy jóvenes.
El protocolo se detalla a continuación, aprobado por y realizadas de conformidad con las directrices del Comité de Servicio de Ética de la Investigación Nacional (este de Inglaterra), proporciona un método sencillo y fiable para la generación de BOECs con una eficiencia superior al 90% a partir de un volumen relativamente pequeño (60 ml) de sangre periférica. Estas células son altamente proliferativa y pueden ser pasados repetidamente, lo que permite la generación de cientos de millones de células de una única muestra de sangre.
We present a detailed protocol that allows for the robust and efficient derivation of BOECs from adult peripheral blood mononuclear cells (PBMNCs). Our protocol includes two important refinements that represent advances on previous methods of BOEC isolation.14-16 These include the absence of heparin in the initial PBMNC culture medium and the use of defined, embryonic stem cell-qualified serum. This latter refinement is of particular importance. Embryonic stem cell (ESC)-qualified serum is a more consistent grade of serum and, although it is not known yet what component(s) are enriched in the serum that benefit BOEC isolation, the impact of this defined serum on the efficiency of BOEC generation is clear in our hands. In addition, we have also had success in isolating BOECs using human serum, thereby allowing for the generation of BOECs for clinical translation. In our hands, this refined protocol results in the successful isolation of stable BOEC cultures from greater than 90% of donors, making it one of the most reliable BOEC generation methods reported thus far. Although the use of particular sera is critical to BOEC generation, it also represents a primary limitation of the current protocol. Future improvements to the technique could include the generation of these cells in serum-free, defined culture conditions.
Critical Steps in the protocol include processing blood samples as soon as possible after collection, complete harvesting of the buffy coat cells after density gradient centrifugation and the timely passaging of initial colonies from P0 to P1. This passaging step is critical to establishment of a stable isolation. Like other endothelial cells, BOECs appear to be very sensitive to plating density. If the plating density after passaging is too low, the BOECs will not proliferate. Conversely, if the colonies are allowed to become overconfluent before passaging, the cells will also cease to proliferate and have the tendency to convert into an elongated, mesenchymal cell phenotype. If few colonies appear from days 7 to 14, or if the colonies are small in size, troubleshooting can include increasing cell density by passaging P0 colonies into a T-25 flask instead of a T-75.
Once the technique is mastered, the resultant BOECs can be used in several applications, including in vitro studies of endothelial cell biology, disease modeling and drug screening, as well as in vivo cell transplantation therapies. An important consideration for the development of any cell therapy process is to use cells that are free from pathogenic mutations. We have previously shown that BOECs isolated using our protocol possess genomes that are free from copy number variations and are thus representative of the individual from which they were collected. In addition, we have also demonstrated that the majority of BOEC-derived iPSC lines are free from copy number variations.13 This contrasts with previous reports of copy number variation in fibroblast-derived iPSCs. To date, these cells remain the only iPSCs for which this degree of genomic fidelity has been reported. This feature is important for the field of iPSC biology and the use of iPSCs in disease modeling, drug screening and future cell transplantation therapies.
The authors have nothing to disclose.
This work was supported by grants funded by the British Heart Foundation (BHF), Dinosaur Trust, McAlpine Foundation, Fondation Leducq, Fight for Sight, the Cambridge Biomedical Research Centre, National Institute of Health Research including (i) the BHF Oxbridge Centre of Regenerative Medicine [RM/13/3/30159], (ii) the BHF Cambridge Centre of Research Excellence, (iii) Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust and (iv) Papworth Hospital NHS Foundation Trust, and supported the Cambridge NIHR BRC Cell Phenotyping Hub. MLO is funded by a BHF Intermediate Fellowship. FNK is funded by a BHF PhD Studentship.
For blood collection | |||
60 mL syringe with luer-lok tip | BD | 309653 | |
19G Surflo Winged Infusion Set | Terumo | SV-19BL | |
50 mL conical centrifuge tube | StarLab | E1450 | 2 per donor |
Sodium Citrate | Martindale Pharmaceuticals | 270541 | |
Name | Company | Catalog Number | Comments |
For buffy coat isolation | |||
Ficoll-Paque Plus | GE Healthcare | 17-1440-03 | |
Dulbecco’s PBS (without Ca2+ and Mg2+) | Sigma-Aldrich | D8537 | |
Sterile wrapped plastic transfer pipettes | Appleton Woods | KC231 | |
Turk’s Solution | Millipore | 1.093E+09 | |
Name | Company | Catalog Number | Comments |
For cell culture, passaging and freezing cells | |||
Type 1 Collagen (derived from rat tail) | BD Biosciences | 35-4236 | |
Dulbecco’s PBS (without Ca2+ and Mg2+) | Sigma-Aldrich | D8537 | |
0.02M Acetic Acid | Sigma-Aldrich | A6283 | prepared in reagent grade water |
Endothelial Growth Medium-2MV (containing Bullet Kit, but not serum) |
Lonza | CC-3202 | Note: It is essential that the medium does not contain heparin. Do not use EGM-2. |
Fetal Bovine Serum (U.S.), Defined | Hyclone | SH30070 | |
10x Trypsin EDTA | Gibco | T4174 | Dilute to 1x in PBS prior to use |
Heat Inactivated FBS | Gibco | 10500-064 | |
DMEM | Gibco | 41965-039 | |
DMSO | Sigma-Aldrich | 276855 | |
Nalgene Mr. Frosty Freezing Container | Sigma-Aldrich | C1562 | |
Name | Company | Catalog Number | Comments |
For flow cytometric characterization | |||
FITC-conjugated mouse anti-human CD14 | BD Biosciences | 555397 | Mouse IgG1k, Clone: WM59 Dilution: 1:20 |
FITC-conjugated mouse anti-human CD31 | BD Biosciences | 555445 | Mouse IgG1k, Clone: WM59 Dilution: 1:20 |
APC-conjugated mouse anti-human CD34 | BD Biosciences | 555824 | Mouse IgG1k, Clone: 581/CD34 Dilution: 1:20 |
FITC-conjugated mouse anti-human CD45 | BD Biosciences | 560976 | Mouse IgG1k, Clone: HI30 Dilution: 1:20 |
APC-conjugated mouse anti-human VEGFR2 | R&D Systems | FAB357A | Mouse IgG1, Clone: 89106 Dilution: 1:10 |
FITC-conjugated mouse IgG1k isotype control | BD Biosciences | 555748 | Clone: MOPC-21 Dilution: 1:20 |
APC-conjugated mouse IgG1k isotype control | BD Biosciences | 555751 | Clone: MOPC-21 Dilution: 1:20 |
APC-conjugated mouse IgG1k isotype control | R&D Systems | IC002A Dilution: 1:10 |
Clone: 11711 |
EDTA, 0.5M solution | Sigma-Aldrich | E7889 | |
Name | Company | Catalog Number | Comments |
For immunofluorescent microscopy | |||
Corning Costar 24-well tissue culture plate | Sigma-Aldrich | CLS3527 | |
Paraformaldehyde | Sigma-Aldrich | 158127 | |
BSA | Sigma-Aldrich | A7906 | |
Polysorbate 20 | Sigma-Aldrich | P2287 | |
Monoclonal mouse anti-human CD34 antibody | R&D Systems | MAB72271 | Clone 756510, IgG1, use at 10 μg/ml |
Polyclonal goat anti-human VE-cadherin (CD144) | R&D Systems | AF938 | Antigen affinity- purified IgG, use at 1:300 |
Monoclonal rabbit anti-human Von Willebrand Factor (vWF) | Abcam | ab154193 | Clone EPSISR15, use at 1:250 |
Donkey anti-mouse IgG (H+L) secondary antibody, Alexa Fluor 488 conjugate | Life Technologies | A-21202 | Polyclonal, 2 mg/ml, use at 1:200 |
Donkey anti-goat IgG (H+L) secondary antibody, Alexa Fluor 488 conjugate | Life Technologies | A-11055 | Polyclonal, 2 mg/ml, 1:200 |
Donkey anti-rabbit IgG (H+L) secondary antibody, Alexa Fluor 568 conjugate | Life Technologies | A-10042 | Polyclonal, 2 mg/ml, 1:200 |
DAPI (4′,6-Diamidino-2-phenylindole dihydrochloride) | Sigma-Aldrich | D9542 | use at 1 μg/ml |