Summary

使用单一感器录音来检测臭虫的嗅觉神经元的反应,以信息化学物质

Published: January 18, 2016
doi:

Summary

Bed bugs rely on olfactory receptor neurons housed in their antennal olfactory sensilla to detect semiochemicals in the environment. Utilizing single sensillum recording, we demonstrate a method to evaluate bed bug response to semiochemicals and explore the coding process involved.

Abstract

昆虫嗅觉系统在环境中的检测信息化学物质中起重要作用。特别是,触角感器其中内部容纳单个或多个神经元,被认为是使在响应化学刺激的重大贡献。暴露于刺激后可直接记录动作电位的嗅觉感器,单感器记录(SSR)技术提供了强大的方法来研究昆虫化学刺激的神经反应。为臭虫,其是臭名昭著的人类寄生虫,多种类型的嗅觉感受器的已经表征。在这项研究中,我们证明了臭虫嗅觉感受器的神经反应两个化学刺激和剂量依赖反应使用SSR方法其中之一。这种方法使研究人员能够进行早期筛查有关臭虫的嗅觉感受器个人化学刺激,这将提供有价值的信息,为devel软件包opment新的臭虫引诱或驱虫剂和效益的臭虫的控制力度。

Introduction

常见的臭虫臭虫臭虫L(半翅目:Cimicidae),作为临时外寄生虫,是一种责任吸血昆虫,这意味着它们的生存,发育和繁殖需要从主机的血液来源,包括人类和动物1,2。虽然病毒的传播很少被报道,由于C.臭虫 ,由为患产生刺骨的滋扰,严重影响主机的生理和心理上3。引进和广泛使用化学杀虫剂,特别是滴滴涕,降低侵染的风险,由20世纪50年代的侵扰末端是在如此低的水平,他们不再是严重的公众关注。然而,许多可能的因素导致在床虱种群到回潮全世界,如杀虫剂的使用减少了,公众意识的下降,增加的行进活性,和耐药性的发展对杀虫剂4-9。</ P>

化学线索的环境中检测到,并通过嗅觉器官,如天线和上颌触须认可昆虫。对昆虫触角的嗅觉感受器在检测这些化学信号发挥了至关重要的作用。化学分子穿过角质层表面气孔进入触角角质层。气味结合蛋白在触角淋巴液绑定到这些化学分子和他们运到气味受体10。臭气物质受体和它们的共受体从神经膜的非选择性阳离子离子通道,这将在去极化一旦这些化学分子被气味受体11识别。

单感器记录(SSR)的开发,以检测所引起的化学或非化学刺激的应用的动作电位的胞外变化。通过将记录电极浸入感器淋巴液和参考电极入昆虫身体(通常是复眼或腹部)的其他部分,所述神经元的响应的燃烧率,以刺激可记录12。变化尖峰的数目代表该昆虫对特定刺激的敏感性。不同的身份和浓度的化学刺激将引起不同的神经反应,用不同的燃烧率和时间的结构,并且因此可以用于研究昆虫到特定化学品的编码处理。

对于常见的臭虫,有性形式分享嗅觉感受器的相同模式的触角:九槽的PEGÇ感器,29发丝般E(E1和E2)感器,而每个Dα,Dβ,Dγ顺利盯住一对感器13,14。作为多个神经元已经于每种类型感器的已经确定,这是不容易区分从安置在同一感器不同的神经元的动作电位,所以对于这个实验中托塔动作电位升数字被用于前和刺激后500毫秒周期期间计数的脱线。然后,从刺激前动作电位的数目中减去,并以量化在每秒 15尖峰每个单独感器中的变化的燃烧率乘以二的刺激后动作电位的数目。

Protocol

1.准备仪器,刺激方案和臭虫的制备在20ml的瓶子50%KNO 2溶液(重量/体积)。 通过反复浸渍钨电极和流出溶液的锐化2钨微电极KNO 2溶液在5 V。 大致通过浸渍钨丝和移出KNO 2溶液的约10毫米,在2骤降/秒的速度约5分钟,从而可以大大消耗钨丝的前端锐化钨丝。 微妙锐化电极浸渍在进出溶液的金属丝端头为约1毫米,在2骤降/秒的速度进行至少1分钟?…

Representative Results

单感器录音昆虫化学生态学和神经生理学的研究使用了强大的侦查手段。调查昆虫不同的挥发性化合物,特别是那些想到的神经反应是生态环境关系到昆虫的生存和发展,不仅为我们提供了宝贵的见解昆虫嗅觉过程中,同时也开启了充满希望的新途径,它可能会导致到有用的新试剂的发展,防治病虫害。 常见的臭虫,作为臭?…

Discussion

的单感器记录技术已被广泛使用在测试昆虫的神经反应,如果苍蝇,蚊子和臭虫到环境中的不同的化学刺激。这些化学刺激往往溶解并稀释在一个共同的溶剂中,以制备不同剂量的治疗。然而,不同的溶剂可以产生完全不同的释放速度的刺激。在一些广泛的研究昆虫,例如果蝇冈比亚按蚊致倦库蚊伊蚊已经过去的研究 通常使用石蜡油作为溶剂以溶解的?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

The project was supported by Award AAES 461Hatch/Multistate Grants ALA08-045 and ALA015-1-10026 to N.L.

Materials

Tungsten wire A-M SYSTEMS #716500 Used for preparing the electrode
KNO2 Sigma #310484 Used for sharpening the tungsten wire
AC Power Supply BK Precision 1653A Providing the voltage in sharpening the tungsten wire
Leica Z6 APO Microscope Leica 10447424 Used for observing the sensilla on antennae
Simulus controller Syntech CS-55 Used for controlling the stimulus application
4-Channel USB Acquisition Controller Syntech IDAC-4 Real-time on screen display of all signals before and during recording
Light Source SCHOTT A20500 Providing light sources for observation
Micromanupulator Leica 115378 Used for minor movement of electrode
Speaker Juster 95a Connected with Acquisition Controller IDAC-4 and providing sound for the signal
Magnetic stand Narishige GJ-1 Used to hold the reference electrode, stablized bed bug and stimulus delivery tube
TMC Vibration Isolation Table TMC 63-500 Used for isolating the vibration from the equipments
Coverslip Tedpella 2225-1 Used for holding the bed bug
Double-sided Tape 3M XT6110 Used for stablizing the bed bug on the coverclip
Dental Wax Dentakit DK-R012 Used for supporting the coverclip where bed bug is stablized 

Referenzen

  1. Bartonicka, T., Gaisler, J. Seasonal dynamics in the numbers of parasitic bugs (Heteroptera, Cimicidae): a possible cause of roost switching in bats (Chiroptera, Vespertilionidae). Parasitol Res. 100 (6), 1323-1330 (2007).
  2. Thomas, I., Kihiczak, G. G., Schwartz, R. A. Bed bug bites: a review. Int J Dermatol. 43 (6), 430-433 (2004).
  3. Anderson, A. L., Leffler, K. Bed bug infestations in the news: a picture of an emerging public health problem in the United States. J Environ Health. 70 (9), 24-27 (2008).
  4. Boase, C., Robinnson, W., Bajomi, D. Bed bugs (Hemiptera: Cimicidae): an evidence-based analysis of the current situation. Sixth international conference on urban pests. OOK-Press Kft. , (2008).
  5. Doggett, S. L., Geary, M. J., Russell, R. C. The Resurgence of bed bugs in Australia: with notes on their ecology and control. Environ Health. 4 (2), 30-38 (2004).
  6. Ter Poorten, M. C., Prose, N. S. The return of the common bedbug. Pediatr Dermatol. 22 (3), 183-187 (2005).
  7. Yoon, K. S., Kwon, D. H., Strycharz, J. P., Craig, S., Lee, S. H., Clark, J. M. Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae). J Med Entomol. 45 (6), 1092-1101 (2008).
  8. Wang, L., Xu, Y., Zeng, L. Resurgence of bed bugs (Hemiptera: Cimicidae) in mainland China. Fla Entomol. 96 (1), 131-136 (2013).
  9. Haynes, K. F., Potter, M. F., Ishaaya, I., Palli, S. R., Horowitz, A. R. Recent progress in bed bug management. Advanced technologies for managing insect pests. , 269-278 (2013).
  10. Carey, A. F., Carlson, J. R. Insect olfaction from model systems to disease control. Proc Natl Acad Sci. 108 (32), 12987-12995 (2011).
  11. Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 58, 373-391 (2013).
  12. Den Otter, C. J., Behan, M., Maes, F. W. Single cell response in female Pieris brassicae. (Lepidoptera: Pieridae) to plant volatiles and conspecific egg odours. J Insect Physiol. 26 (7), 465-472 (1980).
  13. Levinson, H. Z., Levinson, A. R., Muller, B., Steinbrecht, R. A. Structural of sensilla, olfactory perception, and behavior of the bed bug, Cimex lectularius., in response to its alarm pheromone. J Insect Physiol. 20 (7), 1231-1248 (1974).
  14. Harraca, V., Ignell, R., Löfstedt, C., Ryne, C. Characterization of the antennal olfactory system of the bed bug (Cimex lectularius). Chem Senses. 35 (3), 195-204 (2010).
  15. Liu, F., Haynes, K. F., Appel, A. G., Liu, N. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius. J Chem Ecol. 40 (6), 522-533 (2014).
  16. Olson, J. F., Moon, R. D., Kells, S. A., Mesce, K. A. Morphology, ultrastructure and functional role of antennal sensilla in off-host aggregation by the bed bug, Cimex lectularius. Arthropod Struct Dev. 43 (2), 117-122 (2014).
  17. Bruyne, M., Foster, K., Carlson, J. R. Odor coding in the Drosophila antenna. Neuron. 30 (2), 537-552 (2001).
  18. Qiu, Y. T., Loon, J. J. A., Takken, W., Meijerink, J., Smid, H. M. Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae. Chem Senses. 31 (9), 845-863 (2006).
  19. Ghaninia, M., Ignell, R., Hansson, B. S. Functional classification and central nervous projections of olfactory receptor neurons housed in antennal trichoid sensilla of female yellow fever mosquito, Aedes aegypti. Eur J Neurosci. 26 (6), 1611-1623 (2007).
  20. Hill, S. R., Hanson, B. S., Ignell, R. Characterization of antennal trichoid sensilla from female southern house mosquito, Culex quinquefasciatus Say. Chem Senses. 34 (3), 231-252 (2009).

Play Video

Diesen Artikel zitieren
Liu, F., Liu, N. Using Single Sensillum Recording to Detect Olfactory Neuron Responses of Bed Bugs to Semiochemicals. J. Vis. Exp. (107), e53337, doi:10.3791/53337 (2016).

View Video