Summary

对小鼠脑血管净化

Published: November 10, 2015
doi:

Summary

We describe a protocol allowing the purification of the mouse brain’s vascular compartment. Isolated brain vessels include endothelial cells linked by tight junctions and surrounded by a continuous basal lamina, pericytes, vascular smooth muscle cells, as well as perivascular astroglial membranes.

Abstract

在大脑中,大部分的血管系统包括一个选择性屏障,血 – 脑屏障(BBB),调节脑和血液之间的分子和免疫细胞的交换。此外,庞大的神经细胞代谢的需求,需要一个时刻到时刻调节血流量。值得注意的是,这些规定的异常是最脑部病变的病因特点;包括成胶质细胞瘤,中风,水肿,癫痫症,退化性疾病(例如:帕金森氏病,阿尔茨海默氏病),脑肿瘤,以及炎症性疾病,如多发性硬化症,脑膜炎和脓毒症诱导的脑机能障碍。因此,了解的信号传导事件调制脑生理学是一个重大的挑战。多洞察构成该脑血管系统中的各种细胞类型的细胞和分子性质可以从原代培养物或细胞从新鲜分离的脑组织排序来获得。然而,如细胞极性,形态和细胞间的关系属性不保持在这样的准备。我们在这里描述的协议被设计成净化脑血管片段,同时保持结构的完整性。我们表明,隔离容器包括由是由一个连续的基底层包围紧密连接密封内皮细胞。周细胞,平滑肌细胞以及血管周围星形胶质细胞endfeet膜保持连接到内皮细胞层。最后,我们将介绍如何在纯化脑血管进行免疫染色实验。

Introduction

中枢神经系统(CNS)的正常功能需要一个高度调节细胞外的环境中,以及相对于其他器官1其代谢需求是巨大的。中枢神经系统也是范围广泛的化学品,通常无害的外周器官,但它,神经毒性非常敏感。为确保正常运行,大部分的中枢神经系统“血管形成的血管内皮屏障;血-脑屏障(BBB),其控制分子和离子的流动,以及血液和大脑之间的免疫细胞的通路,从而保持适当的稳态2,也限制了治疗性药物的条目,从而妨碍治疗神经系统疾患3。在细胞水平,血脑屏障主要持续由内皮细胞,流出转运偏振光表达和非常低的胞转率4之间广泛紧密连接。性能及血脑屏障的功能大多是诱发NEighboring细胞4。具体地,周细胞发挥 ​​诱导和维持所述BBB 5,6中起重要作用。作为收缩细胞,周也调节血流量7做周围大血管的平滑肌细胞。最后,星形胶质细胞,脑的主要神经胶质细胞,发送名为endfeet围绕大型进程最大脑脉管8和调制血脑屏障完整性和免疫静止9,代谢物转移到神经元10,和诱导神经元活性之间的紧耦合和血流11,12。

研究脑血管系统的细胞和分子性质的能力是非常重要的特点更好其脑生理学和病理生理学的贡献。为了解决这个问题,已经发展战略,以隔离大脑的脑血管系统,该系统允许完整的脑血管片段的准备。脑血管purification被使用牛脑中13最初描述和改进,并适用于其它物种,特别是啮齿动物14。在这最后的研究中,使用不同大小的过滤器被引入到分离脑血管中,以级分富含不同直径的容器。有趣的是,在这些制剂,内皮细胞保持它们的代谢特性15,转运功能1617的极化。在这里,我们详细描述了这个协议,并进一步证明了隔离容器保留大部分的原位结构。内皮细胞保持通过紧密连接相连,通过一个连续的基底层包围。周细胞和平滑肌细胞保持附着在内皮细胞层,以及血管周围星形胶质细胞膜。然而,星形胶质细胞,小神经胶质细胞,神经元和少突胶质细胞被消除。最后,我们描述了一个过程来执行免疫染色对离体脑血管。 </P>

直至现在大多数关于脑血管系统的分子和细胞研究已经由解离纯化脑血管细胞进行细胞分选使用细胞特异性报道的小鼠品系或免疫染色基于程序18,19。尽管这些技术允许几乎纯脑血管的细胞群的分离,分离的细胞完全丧失其原位形态学和相互作用,这反过来又极大地影响它们的分子和细胞的特性。在这里描述的协议,从而允许整个脑血管片段无需特异性抗体或转基因小鼠的污渍的隔离,提供了一个很好的选择,作为分离的脑血管的总体结构是保守的,因此,减少它们的分子性能影响。隔离容器然后可以用于研究基因的活性,蛋白质合成和调节在所述BBB作为最近描述20,21 </suP>。最后,相对于激光捕获显微切割22,23,本协议是廉价的,易于实施,并在任何实验室迅速适应。

Protocol

1.解决方案和材料准备隔离器的解决方案:B1,加1.5毫升HEPES为1M至150ml的HBSS; B2,加3.6克葡聚糖到20ml B1的; B3,加1克的BSA至100毫升B1的。 通过切割掉底的上旋拧部分修改过滤器保持器。 制备免疫染色方案:固定溶液,在pH 7.4的PBS的4%多聚甲醛;透/封闭溶液,稀释山羊血清至5%和Triton X100至0.25%的pH 7.4的PBS。 注意:固定取决于所用第一抗体的类型。 <p class="jove_title"…

Representative Results

在这里,我们描述了一种协议,允许为脑血管14的机械隔离。 图1概括了该技术的主要步骤。脑血管的结构是复杂的,并且包括几个细胞类型, 即,由紧密连接密封,并用周细胞,平滑肌细胞,和星形胶质细胞足突9包围内皮细胞。因此,下面的脑血管的隔离,我们的目的是通过如在我们的协议的第二部分中描述的免疫染色的纯化血管的结构表征。集聚蛋白,内?…

Discussion

血 – 脑屏障调节生理物质在中枢神经系统中的进出的通道和保护其不受存在于血液中潜在的有害物质。它参与几个CNS病症,包括神经退行性疾病2和脑肿瘤28。血脑屏障的渗透率极低的也阻碍了靶向神经细胞和方法意欲可逆打开血脑屏障无有害的后果对大脑的研究3一个非常活跃的研究领域的发展的治疗剂的通过。已作出许多努力来开发有价值模型和技术允许细胞,分子和药…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作是由Labex MemoLife并通过ARSEP支持(倒基金会欧莱雅助手点菜RECHERCHE河畔拉sclérose恩斑)

Materials

Tissue Grinder Size C Thomas scientific 3431E25
centrifuge 5415 R Eppendorf
centrifuge 5810 R Eppendorf 5811000320
High-performance, Modular Stereomicroscope Leica MZ6
Compact System Provides High Quality Leica LED1000 Leica LED1000
low binding tips (P1000) Sorenson BioScience 14200T
Swinnex 47mm filter holder PP 8/Pk Millipore SX0004700
Nylon net filter disc Hydrophilic 20µm 47mm 100/Pk Millipore NY2004700
Nylon net filter disc Hydrophilic 100µm 47mm 100/Pk Millipore NY1H04700
Standard Wall Borosilicate Tubing Sutter Instrument B150-86-7.5
Microscope Slides Thermo Scientific 1014356290F
Cover Slips, Thickness 1 Thermo Scientific P10143263NR1
0,2 ml Thin-walled tubes and domed cap Thermo Scientific AB-0266
 PARAFILM® M (roll size 4 in. × 125 ft) Sigma P7793-1EA
HBSS, no calcium, no magnesium, no phenol red Life technology 14175-129
HEPES (1M) Life technology 15630056
Dextran from Leuconostoc spp. Mr ~70,000 Sigma 31390
Bovine serum albumin Sigma A2153
PBS 10X Euromedex ET330
16% Formaldehyde (w/v), Methanol-free  Thermo Scientific 28908
Triton X-100 Sigma X100
bisBenzimide H 33342 trihydrochloride (Hoechst) Sigma 14533
Mounting medium Fluoromount-G Southern Biotech 0100-01
Isolectin GS-IB4 From Griffonia simplicifolia, Alexa Fluor® 488 Conjugate; Dilution 1/100 Life technology I21411
Agrin (rabbit) ; dilution 1/400 kindly provided by Dr Markus A Ruegg
Anti ZO-1 (mouse, clone 1A12) Life technology 33-9100 dilution 1:500
Anti Smooth Muscle Actin (mouse, clone 1A4) Sigma A2547  dilution 1:500
Anti GFAP (mouse, clone GA5) Sigma G3893  dilution 1:500
Anti AQP4 (rabbit) Sigma A5971  dilution 1:500
Anti Cx43 (mouse, Clone  2) BD Biosciences 610061  dilution 1:500
Anti Olig2 (rabbit) Millipore AB9610  dilution 1:200
Anti NF-M (mouse) provided by Dr Beat M. Riederer, University of Lausanne, Switzerland.  dilution 1:10
Anti Iba1 (rabbit) Wako 019-19741  dilution 1:400
Alexa Fluor® 488 Goat Anti-Mouse IgG (H+L) Antibody Life technology A11029  dilution 1:2000
Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 488 conjugate Life technology A11034  dilution 1:2000
Alexa Fluor® 555 Goat Anti-Mouse IgG (H+L) Antibody Life technology A21424  dilution 1:2000
Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 555 conjugate Life technology A21429  dilution 1:2000

Referenzen

  1. Rolfe, D. F., Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiological Reviews. 77 (3), 731-758 (1997).
  2. Zlokovic, B. V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron. 57 (2), 178-201 (2008).
  3. Pardridge, W. M. Blood-brain barrier delivery. Drug Discovery Today. 12 (1-2), 54-61 (2007).
  4. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., Begley, D. J. Structure and function of the blood-brain barrier. Neurobiology of Disease. 37 (1), 13-25 (2010).
  5. Daneman, R., Zhou, L., Kebede, A. A., Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 468 (7323), 562-566 (2010).
  6. Armulik, A., Genové, G., et al. Pericytes regulate the blood-brain barrier. Nature. 468 (7323), 557-561 (2010).
  7. Hall, C. N., Reynell, C., et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 508 (7494), 55-60 (2014).
  8. Mathiisen, T. M., Lehre, K. P., Danbolt, N. C., Ottersen, O. P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 58 (9), 1094-1103 (2010).
  9. Abbott, N. J., Rönnbäck, L., Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience. 7 (1), 41-53 (2006).
  10. Allaman, I., Brain Magistretti, P. J. Energy Metabolism: Focus on Astrocyte-Neuron Metabolic Cooperation. Cell Metabolism. 14 (6), 724-738 (2011).
  11. Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., MacVicar, B. A., Newman, E. A. Glial and neuronal control of brain blood flow. Nature. 468 (7321), 232-243 (2010).
  12. Iadecola, C., Nedergaard, M. Glial regulation of the cerebral microvasculature. Nature Neuroscience. 10 (11), 1369-1376 (2007).
  13. Brendel, K., Meezan, E., Carlson, E. C. Isolated brain microvessels: a purified, metabolically active preparation from bovine cerebral cortex. Science (New York, N.Y.). 185 (4155), 953-955 (1974).
  14. Yousif, S., Marie-Claire, C., Roux, F., Scherrmann, J. -. M., Declèves, X. Expression of drug transporters at the blood-brain barrier using an optimized isolated rat brain microvessel strategy. Brain Research. 1134, 1-11 (2007).
  15. Dallaire, L., Tremblay, L., Béliveau, R. Purification and characterization of metabolically active capillaries of the blood-brain barrier. Biochemical Journal. 276 ((Pt 3)), 745 (1991).
  16. Boado, R. J., Pardridge, W. M. The brain-type glucose transporter mRNA is specifically expressed at the blood-brain barrier. Biochemical and Biophysical Research Communications. 166 (1), 174-179 (1990).
  17. Betz, A. L., Firth, J. A., Goldstein, G. W. Polarity of the blood-brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Research. 192 (1), 17-28 (1980).
  18. Daneman, R., Zhou, L., Agalliu, D., Cahoy, J. D., Kaushal, A., Barres, B. A. The Mouse Blood-Brain Barrier Transcriptome: A New Resource for Understanding the Development and Function of Brain Endothelial Cells. PLoS ONE. 5 (10), e13741 (2010).
  19. Zhang, Y., Chen, K., et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex.. The Journal of Neuroscience. 34 (36), 11929-11947 (2014).
  20. Boulay, A. -. C., Saubaméa, B., et al. The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels. Frontiers in Cellular Neuroscience. 9, 9 (2015).
  21. Boulay, A. -. C., Mazeraud, A., et al. Immune quiescence of the brain is set by astroglial Connexin 43. The Journal of Neuroscience. 35 (10), 4427-4439 (2015).
  22. Ball, H. J., McParland, B., Driussi, C., Hunt, N. H. Isolating vessels from the mouse brain for gene expression analysis using laser capture microdissection. Brain Research Protocols. 9 (3), 206-213 (2002).
  23. Murugesan, N., Macdonald, J., Ge, S., Pachter, J. S. Probing the CNS microvascular endothelium by immune-guided laser-capture microdissection coupled to quantitative RT-PCR. Methods Mol Biol. 755, 385-394 (2011).
  24. Okada, S. L. M., Stivers, N. S., Stys, P. K., Stirling, D. P. An Ex Vivo Laser-induced Spinal Cord Injury Model to Assess Mechanisms of Axonal Degeneration in Real-time. Journal of Visualized Experiments. (93), (2014).
  25. Winkler, E. A., Bell, R. D., Zlokovic, B. V. Central nervous system pericytes in health and disease. Nature Neuroscience. 14 (11), 1398-1405 (2011).
  26. Ezan, P., André, P., et al. Deletion of astroglial connexins weakens the blood-brain barrier. Journal of Cerebral Blood Flow and Metabolism. , (2012).
  27. Simard, M., Arcuino, G., Takano, T., Liu, Q. S., Nedergaard, M. Signaling at the gliovascular interface. The Journal of neuroscience. 23 (27), 9254-9262 (2003).
  28. Dubois, L. G., Campanati, L., et al. Gliomas and the vascular fragility of the blood brain barrier. Frontiers in Cellular Neuroscience. 8, 418 (2014).
  29. Goldstein, G. W., Wolinsky, J. S., Csejtey, J., Diamond, I. Isolation of metabolically active capillaries from rat brain1,2. Journal of Neurochemistry. 25 (5), 715-717 (1975).
  30. Hjelle, J. T., Baird-Lambert, J., Cardinale, G., Specor, S., Udenfriend, S. Isolated microvessels: the blood-brain barrier in vitro. Proceedings of the National Academy of Sciences of the United States of America. 75 (9), 4544 (1978).
  31. Head, R. J., Hjelle, J. T., Jarrott, B., Berkowitz, B., Cardinale, G., Spector, S. Isolated brain microvessels: preparation, morphology, histamine and catecholamine contents. Blood Vessels. 17 (4), 173-186 (1980).
  32. Pardridge, W. M., Sakiyama, R., Coty, W. A. Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. Journal of neurochemistry. 44 (4), 1138-1141 (1985).
  33. Gerhart, D. Z., Broderius, M. A., Drewes, L. R. Cultured human and canine endothelial cells from brain microvessels. Brain Res Bull. 21 (5), 785-793 (1988).
  34. Luo, J., Yin, X., Sanchez, A., Tripathy, D., Martinez, J., Grammas, P. Purification of endothelial cells from rat brain. Methods Mol Biol. 1135, 357-364 (2014).
  35. Munikoti, V. V., Hoang-Minh, L. B., Ormerod, B. K. Enzymatic digestion improves the purity of harvested cerebral microvessels. J Neurosci Methods. 207 (1), 80-85 (2012).
  36. Weidenfeller, C., Schrot, S., Zozulya, A., Galla, H. J. Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res. 1053 (1-2), 162-174 (2005).
  37. Bowman, P. D., Betz, A. L., et al. Primary culture of capillary endothelium from rat brain. In Vitro. 17 (4), 353-362 (1981).
  38. Bowyer, J. F., Thomas, M., Patterson, T. A., George, N. I., Runnells, J. A., Levi, M. S. A Visual Description of the Dissection of the Cerebral Surface Vasculature and Associated Meninges and the Choroid Plexus from Rat Brain. Journal of Visualized Experiments. (69), (2012).
  39. Ohtsuki, S., Yamaguchi, H., Asashima, T., Terasaki, T. Establishing a Method to Isolate Rat Brain Capillary Endothelial Cells by Magnetic Cell Sorting and Dominant mRNA Expression of Multidrug Resistance-associated Protein 1 and 4 in Highly Purified Rat Brain Capillary Endothelial Cells. Pharmaceutical Research. 24 (4), 688-694 (2007).
  40. Warren, M. S., Zerangue, N., et al. Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacological Research. 59 (6), 404-413 (2009).
  41. Geier, E. G., Chen, E. C., et al. Profiling Solute Carrier Transporters in the Human Blood-Brain Barrier. Clinical Pharmacology and Therapeutics. 94 (6), 636-639 (2013).
  42. Seetharaman, S., Barrand, M. A., Maskell, L., Scheper, R. J. Multidrug Resistance-Related Transport Proteins in Isolated Human Brain Microvessels and in Cells Cultured from These Isolates. Journal of Neurochemistry. 70 (3), 1151-1159 (1998).
  43. Urich, E., Patsch, C., Aigner, S., Graf, M., Iacone, R., Freskgard, P. O. Multicellular self-assembled spheroidal model of the blood brain barrier. Sci Rep. 3, 1500 (2013).

Play Video

Diesen Artikel zitieren
Boulay, A., Saubaméa, B., Declèves, X., Cohen-Salmon, M. Purification of Mouse Brain Vessels. J. Vis. Exp. (105), e53208, doi:10.3791/53208 (2015).

View Video